\(A=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{30}}\)
Chứng minh 2A<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
\(=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{8}-\frac{1}{16}\right)+\left(\frac{1}{32}-\frac{1}{64}\right)\)
\(=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)
\(=\frac{16+4+1}{64}\)
\(=\frac{21}{64}< \frac{1}{3}\)(đpcm)
b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
3A-A=\(1-\frac{1}{3^{99}}\)
2A=\(1-\frac{1}{3^{99}}\)
vì 2A<1
=> A<\(\frac{1}{2}\)
\(3A=1+\frac{1}{3}+...+\frac{1}{3^{29}}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{29}}\right)-\left(\frac{1}{3}+...+\frac{1}{3^{30}}\right)\)
\(2A=1-\frac{1}{3^{30}}< 1\left(đpcm\right)\)
\(3A=1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{29}}\)
\(A=0+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{29}}+\frac{1}{3^{30}}\)
\(\Rightarrow3A-A=1-\frac{1}{3^{30}}\)
\(\Rightarrow2A< 1\)