Tìm một số tự nhiên, biết rằng số đó chia cho 16 dư 5 và chia cho 34 dư 25; hiệu hai thương bằng 107 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
Gọi x là số cần tìm
x chia 23 dư 14
x chia 25 dư 16
\(\Rightarrow\hept{\begin{cases}\left(x+9\right)⋮23;25\\100\le x\le999\end{cases}}\)
\(23=23\)
\(25=5^2\)
\(BCNN\left(23;25\right)=5^2\cdot23=575\)
\(BC\left(23;25\right)=B\left(575\right)=\left\{0;575;1150;1725;...\right\}\)
\(\Rightarrow x+9=\left\{0;575;1150;1725\right\}\)
\(x=\left\{-9;566;1141;1716;...\right\}\)
Vì \(100\le x\le999\)
Vậy x = 566
Gọi số cần tìm là a( Điều kiện: A thuộc N*)
Mà a:23 dư 14, a: 25 dư 16
=> a + 9 chia hết cho 23 và 25
a + 9 : 23
a + 9 : 25
=> a + 9 thuộc BC(23,25)
23 = 23
25 = 52
=> BCNN(23,25) = 23. 52
=575
=>a + 9 thuộc BC(23,25) ={0, 575, 1150, 1725,...)
=> a thuộc {566, 1141, 1719, ...)
Mà a là số có 3 chữ số
=> a = 566
Nhớ nha!
Gọi số cần tìm là a ( a ∈ N* ; 99 < a < 1000 )
Theo bài ra , ta có :
\(\hept{\begin{cases}a-8⋮17\\a-16⋮25\end{cases}}\Rightarrow\hept{\begin{cases}\left(a-8\right)+17⋮17\\\left(a-16\right)+25⋮25\end{cases}}\Rightarrow\hept{\begin{cases}a+9⋮17\\a+9⋮25\end{cases}}\)
\(\Rightarrow a-9∈BC\left(17,25\right)\)
Vì 17 và 25 nguyên tố cùng nhau
=> BCNN( 17 . 25 ) = 17 . 25 = 425
=> BC( 17 , 25 ) = { 0 ; 425 ; 850 ; 1275 ; ... }
=> a + 9 ∈ { 0 ; 425 ; 850 ; 1275 ; ... }
=> a ∈ { 416 ; 841 ; 1266 ; ... } ( do a ∈ N* )
Mà 99 < a < 1000
=> a ∈ { 416 ; 841 }
Lời giải:
Do $a$ chia $25$ dư $16$ nên $a=25k+16$ với $k$ nguyên.
$a-8\vdots 17$
$\Rightarrow 25k+8\vdots 17$
$\Rightarrow 25k+25\vdots 17$
$\Rightarrow 25(k+1)\vdots 17$
$\Rightarrow k+1\vdots 17\Rightarrow k=17m-1$ với $m$ nguyên.
Vậy $a=25k+16=25(17m-1)+16=425m-9$
Do $a$ có 3 chữ số nên $100\leq 425m-9\leq 999$
$\Rightarrow 0< m<3$
$\Rightarrow m=1, 2$
$\Rightarrow a=416$ hoặc $a=841$
a)Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
b)126: a dư 25=>a khác 0 ; 1;126
=>126-25=101 chia hết cho a
Mà 101=1.101
=>a=1(L) hoặc a=101(TM)
Vậy a=101
gọi số cần tìm là A :
chia cho 29 dư 5
A = 29 x p + 5 ( p \(\in\)N )
A = 31 x q + 28 ( q \(\in\)N )
nên :
29 x p + 5 = 31 x q + 28
=> 29 x ( p - q ) = 2 x q + 23
ta có :
2 x q + 23 là số lẻ
=> 29 x ( p - q ) là số lẻ
vậy p - q = 1
theo giả thiết phải tìm A nhỏ nhất :
=> 2q = 29 x ( p - q ) - 23 nhỏ nhất
=> q nhỏ nhất ( A = 31 x q + 28 )
=> p - q nhor nhất
suy ra : 2 x q = 29 x 1 - 23 = 6
=> q = 6 : 2 = 3
vậy số cần tìm là : A = 31 x q + 28 =31 x 3 + 28 = 131
Gọi số cần tìm là : a. Điều kiện : a\(\in\)N* ; a là số tự nhiên có 3 chữ số
Vì a chia cho 3 dư, cho 5 dư 4, cho 7 dư 6 nên ta có : \(\hept{\begin{cases}a-2⋮3\\a-4⋮5\\a-6⋮7\end{cases}\Rightarrow\hept{\begin{cases}a-2+3⋮3\\a-4+5⋮5\\a-6+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}a+1⋮3\\a+1⋮5\\a+1⋮7\end{cases}}}\)
\(\Rightarrow\)a+1\(\in\)BC(3,5,7)
Ta có : 3=3
5=5
7=7
\(\Rightarrow\)BCNN(3,5,7)=3.5.7=105
\(\Rightarrow\)BC(3,5,7)=B(105)={0;105;210;315;...;945;...}
\(\Rightarrow\)a+1\(\in\){-1;104;209;314;...;944;...}
Mà a chia hết cho 6 và a là số lớn nhất có 3 chữ số
\(\Rightarrow\)a=944
Vậy số cần tìm là 944