tim so nguyen n de 3n-2chia het 2n-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$n^3-3n^2-3n-1=n(n^2+n+1)-4n^2-4n-1$
$=n(n^2+n+1)-4(n^2+n+1)+3=(n^2+n+1)(n-4)+3$
Với $n$ nguyên, để $n^3-3n^2-3n-1$ chia hết cho $n^2+n+1$ thì $3\vdots n^2+n+1$, hay $n^2+n+1$ là ước của $3$
Mà $n^2+n+1=(n+\frac{1}{2})^2+\frac{3}{4}>0$ nên:
$n^2+n+1\in\left\{1; 3\right\}$
$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$
2n + 1 chia hết cho n - 3
Ta có: 2n + 1 = 2( n - 3) + 7
Để 2n +1 chia hết cho n -3 thì 7 chia hết cho n - 3
=> n - 3 thuộc Ư(7) = { 1;-1;7;-7 }
=> n thuộc { 4;3;10;-4 }
6n+4 chia hết cho 2n+1
Ta có: 6n+4=3(2n+1)+1
Để 6n+4 chia hết cho 2n+1 thì 1 chia hết cho 2n + 1
=> 2n+1 thuộc Ư( 1)={1;-1}
=> n thuộc {0; -1}
a/ Để n - 3 chia hết cho 7 thì n - 3 = 7k => n = 7k + 3 (Với k thuộc N*)
Ta có 2n+1=2(n-3)+7
=> 7 chia hết cho n-3
n nguyên => n-3 nguyên => n-3\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-3 | -7 | -1 | 1 | 7 |
n | -4 | 2 | 4 | 10 |
*) Ta có 6n+4=3(2n+1)+1
=> 1 chia hết cho 2n+1
n nguyên => 2n+1 nguyên => 2n+1 \(\inƯ\left(1\right)=\left\{-1;1\right\}\)
Nếu 2n+1=-1 => 2n=-2 => n=-1
Nếu 2n+1=1 => 2n=0 => n=0
2n + 1 chia hết cho n - 3
2n + 1 = 2n - 6 + 7 = 2(n - 3) + 7
Vì 2n + 1 chia hết cho n - 3 và 2(n - 3) chia hết cho n - 3
=> 7 chia hết cho n - 3
=> n - 3 là ước nguyên của 7
Ta có bảng sau :
n - 3 | 1 | 7 | -1 | -7 |
n | 4 | 10 | 2 | -4 |