\(A=\frac{1}{5^2}+\frac{1}{5^4}+\frac{1}{5^6}+....+\frac{5}{5^{2018}}\)
C/M A < \(\frac{1}{24}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=\frac{1}{5^2}+\frac{1}{5^4}+\frac{1}{5^6}+\frac{...1}{5^{2018}}\)
\(25S=1+\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2016}}\)
\(25S-S=\left(1+\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2016}}\right)-\left(\frac{1}{5^2}+\frac{1}{5^4}+\frac{1}{5^6}+...+\frac{1}{5^{2018}}\right)\)
\(24S=1-\frac{1}{5^{2018}}\)
\(S=\frac{1-\frac{1}{5^{2018}}}{24}\)
\(S=\frac{\frac{5^{2018}-1}{5^{2018}}}{24}< \frac{1}{24}\)
Vậy \(S< \frac{1}{24}\)
Chúc bạn học tốt ~
1) Đặt dãy trên là \(A\)
Theo bài ra ta có :
\(A=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{100.100}\)
\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)
2) \(A=\frac{5^{2018}-2017+1}{5^{2018}-2017}=\frac{5^{2018}-2017}{5^{2018}-2017}+\frac{1}{5^{2018}-2017}=1+\frac{1}{5^{2018}-2017}\)( 1 )
\(B=\frac{5^{2018}-2019+1}{5^{2018}-2019}=\frac{5^{2018}-2019}{5^{2018}-2019}+\frac{1}{5^{2018}-2019}=1+\frac{1}{5^{2018}-2019}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(A=1+\frac{1}{5^{2018}-2017}< 1+\frac{1}{5^{2018}-2019}=B\)
\(\Rightarrow A< B\)
Vậy \(A< B.\)
1) Ta có B =
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) < \(\frac{1}{1.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)= \(\frac{99}{100}\)
=> B < 1 ( chứ không phải \(\frac{1}{2}\) bạn nhé)
Sai thì thôi chứ mk chỉ làm rờ thôi
\(5A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)
\(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)
\(\Rightarrow4A=5A-A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)
Đặt \(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
Khi đó \(4A=B-\frac{99}{5^{100}}< B\)
\(5B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}\)
\(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}+\frac{1}{5^{99}}\)
\(\Rightarrow4B=5B-B=1-\frac{1}{5^{99}}\)
\(\Rightarrow B=\frac{1}{4}-\frac{1}{4\cdot5^{99}}< \frac{1}{4}\)
\(\Rightarrow4A < B\Rightarrow4A< \frac{1}{4}\)
\(\Rightarrow A< \frac{1}{16}\) ( đpcm )
2. \(M=\left(1+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(M=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)
\(\Rightarrow\left(M-N\right)^3=0\)
\(A=1-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{2018}}\)
=> \(5^2A-A=5^2-5+1-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{2016}}-\left(1-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{2018}}\right)\)
<=> \(24A=20-\left(\frac{1}{5^{2017}}-\frac{1}{5^{2018}}\right)=20-\frac{4}{5^{2018}}\)
Bạn lấy 1/5 ở cả phân số 1 và 2 làm thừa số chung sau đó rút gọn và sẽ tìm đc kết qyar là 0
\(P=2018.\left(\frac{\frac{1}{3}-\frac{1}{5}+\frac{1}{7}}{\frac{5}{3}-1+\frac{5}{7}}+\frac{1+\frac{4}{5}-\frac{2}{3}}{\frac{5}{4}+1-\frac{5}{6}}\right):\frac{20182018}{20192019}\)
\(P=\frac{\frac{1}{3}-\frac{1}{5}+\frac{1}{7}}{\frac{5}{3}-1+\frac{5}{7}}+\frac{1+\frac{4}{5}-\frac{2}{3}}{\frac{5}{4}+1-\frac{5}{6}}:\frac{20182018}{20192019}\)
\(P=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{5}}{\frac{5}{3}+\frac{5}{7}-1}+\frac{1+\frac{4}{5}-\frac{2}{3}}{1+\frac{5}{4}-\frac{5}{6}}:\frac{20182018}{20192019}\)
\(P=20192019\left(\frac{1+\frac{4}{5}-\frac{2}{3}}{1+\frac{5}{4}-\frac{5}{6}}+\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{5}}{\frac{5}{3}+\frac{5}{7}-1}\right):20182018\)
\(P=2019\left(\frac{1+\frac{4}{5}-\frac{2}{3}}{1+\frac{5}{4}-\frac{5}{6}}+\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{5}}{\frac{5}{3}+\frac{5}{7}-1}\right).2018\)
\(P=2019\left(\frac{1}{5}+\frac{4}{5}\right):2018\)
\(P=2019.1:2018\)
\(P=\frac{2019}{2018}\)
\(P=2018.\frac{2019}{2018}\)
\(P=2019\)
đề sai ko bn nếu là \(\frac{5}{5^{2018}}\)thì sao ko viết bằng \(\frac{1}{5^{2017}}\)hay đề là \(\frac{1}{5^{2018}}\)
nếu đề đúng thì ns mik làm hộ cho còn nếu đề sai nhớ nói