K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

\(\left(2x-3\right)^2-4x^2-297=0\)

\(\Rightarrow\left(2x-3-2x\right)\left(2x-3+2x\right)=297\)

\(\Rightarrow-3\left(4x-3\right)=297\)

\(\Rightarrow4x-3=-99\)

\(\Rightarrow x=-24\)

21 tháng 7 2016

=4x2 -12x +9 -4x2 - 297 =0

-12x -288=0

x = 288/12= 24

x = 24

8 tháng 3 2019

Xét hàm  trên 

Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi phương trình (*) có hai nghiệm phân biệt lớn hơn 1 và khác 

Chọn A.

18 tháng 8 2018

Chọn D.

Δ=(2m-1)^2-4*2*(m-1)

=4m^2-4m+1-8m+8

=4m^2-12m+9=(2m-3)^2>=0

=>PT luôn có 2 nghiệm

4x1^2+4x2^2+2x1x2=0

=>4[(x1+x2)^2-2x1x2]+m-1=0

=>4[(-2m+1)^2/4-2*(m-1)/2]+m-1=0

=>(2m-1)^2-4(m-1)+m-1=0

=>4m^2-4m+1-3m+3=0

=>4m^2-7m+4=0

=>\(m\in\varnothing\)

18 tháng 12 2017

Phương trình 4x2 + 2x – 5 = 0

Có a = 4; b = 2; c = -5, a.c < 0

⇒ Phương trình có hai nghiệm x1; x2

Theo hệ thức Vi-et ta có: Giải bài tập Vật lý lớp 12 nâng cao

8 tháng 9 2018

a) Phương trình  4 x 2 + 2 x − 5 = 0

Có a = 4; b = 2; c = -5, a.c < 0

⇒ Phương trình có hai nghiệm  x 1 ;   x 2

Theo hệ thức Vi-et ta có: Giải bài tập Vật lý lớp 12 nâng cao

b) Phương trình . 9 x 2 − 12 x + 4 = 0

Có a = 9; b' = -6; c = 4  ⇒ Δ 2 = ( - 6 ) 2 - 4 . 9 = 0

⇒ Phương trình có nghiệm kép  x 1   =   x 2 .

Theo hệ thức Vi-et ta có: Giải bài tập Vật lý lớp 12 nâng cao

c) Phương trình  5 x 2 + x + 2 = 0

Có a = 5; b = 1; c = 2  ⇒ Δ = 1 2 − 4.2.5 = − 39 < 0

⇒ Phương trình vô nghiệm.

d) Phương trình  159 x 2 − 2 x − 1 = 0

Có a = 159; b = -2; c = -1; a.c < 0

⇒ Phương trình có hai nghiệm phân biệt  x 1 ;   x 2 .

Theo hệ thức Vi-et ta có: Giải bài tập Vật lý lớp 12 nâng cao

A=(x1-x2)^2-x1^2+x1(x1+x2)

=(x1-x2)^2+x1x2

=(x1+x2)^2-x1x2

=(1/2)^2-(-1/4)=1/4+1/4=1/2

4 tháng 11 2019

15 tháng 7 2018

Đáp án B

Ta có bảng biến thiên

Phương trình (1) có bốn nghiệm phân biệt

  ⇔ *  có hai nghiệm phân biệt lớn hơn 1 

m nguyên và m ∈ − 2019 ; 2019  nên ta có  m ∈ 3 ; 4 ; ... ; 2018 .

Vậy có 2016 giá trị m thỏa mãn bài toán.