K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

Ta có: \(3x^4+3x^2+1=3\left(x^4+x^2+\frac{1}{3}\right)=3\left(x^4+2.x^2.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{1}{3}\right)\)

\(=3\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\right]\ge3.\frac{1}{12}=\frac{1}{4}>0\)

Suy ra vô nghiệm.

Có P(x)=3x^4+x^2+1/4

   Vì 3x^4 \(\ge\) 0  Với mọi x

         x^2 \(\ge\) 0   Với mọi x

    nên 3x^4+x^2 \(\ge\) 0 với mọi x

=>3x^4+x^2+1/4 \(\ge\) 0+1/4 >0   với mọi x

=>P(x) > với mọi x 

Vậy P(x) vô nghiệm

 

16 tháng 9 2019

F(-1)=3*(-1)^4+(-1)^3+10*(-1)^2-7

=3-1+10-7

=5

=>x=-1 ko là nghiệm của 3x^4+x^3+10x^2-7

11 tháng 10 2018

Đáp án B

3 tháng 4 2022

Em 2k8 nên e k chắc :((

Đặt f(x) = x^3 - 3x^2 - 1 = 0 => f(x) liên tục trên (3;4)

x = 3 => f(3) = -1 ; x = 4 => f(4) = 15

=> f(3) . f(4) = -15 < 0 => tồn tại no x thuộc (3;4) để f(x) = 0 ( đpcm ) 

 

4 tháng 5 2023

- Dễ dàng nhận thấy \(x=-1\) không phải là 1 nghiệm của đa thức P(x).

- Gọi b là 1 nghiệm của đa thức \(P\left(x\right)=x^3+3x^2-1\)

Do đó: \(b^3+3b^2-1=0\)

\(\Rightarrow\left(b^3+3b^2+3b+1\right)-3\left(b+1\right)+1=0\)

\(\Rightarrow\left(b+1\right)^3-3\left(b+1\right)+1=0\)

\(\Rightarrow\dfrac{\left(b+1\right)^3-3\left(b+1\right)+1}{\left(b+1\right)^3}=0\)

\(\Rightarrow\left(\dfrac{1}{b+1}\right)^3-3.\left(\dfrac{1}{b+1}\right)^2+1=0\)

\(\Rightarrow\left(-\dfrac{1}{b+1}\right)^3+3.\left(-\dfrac{1}{b+1}\right)^2-1=0\)

Thay \(x=-\dfrac{1}{b+1}\) vào \(P\left(x\right)=x^3+3x^2-1\) ta được:

\(P\left(-\dfrac{1}{b+1}\right)=\left(-\dfrac{1}{b+1}\right)^3+3.\left(-\dfrac{1}{b+1}\right)^2-1=0\)

\(\Rightarrow-\dfrac{1}{b+1}\) là một nghiệm của đa thức P(x).

Đặt \(a=-\dfrac{1}{b+1}\Rightarrow ab+a+1=0\) \(\Rightarrowđpcm\)

17 tháng 3 2017

Theo bất đẳng thức Cô – si ta có:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vì vậy bất phương trình đã cho vô nghiệm.