K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

\(\frac{x-1003}{1007}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)

\(\Rightarrow\left(\frac{x-1003}{1007}-1\right)+\left(\frac{x-4}{1003}-1\right)+(\frac{x+2010}{1005}-4)=0\)

\(\Rightarrow\frac{x-2010}{1007}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)

\(\Rightarrow\left(x-2010\right)\left(\frac{1}{1007}+\frac{1}{1003}+\frac{1}{1005}\right)\)

\(\frac{1}{1007}+\frac{1}{1003}+\frac{1}{1005}\ne0\Rightarrow X-2010=0\Rightarrow x=2010\)

30 tháng 3 2019

\(\frac{x-1003}{1007}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)

\(\frac{x-1003}{1007}-1+\frac{x-4}{1003}-2+\frac{x+2010}{1005}-4=0\)

\(\frac{x-2010}{1003}+\frac{x-2010}{1005}+\frac{x-2010}{1007}=0\)

\(\left(x-2010\right)\left(\frac{1}{1003}+\frac{1}{1005}+\frac{1}{1007}\right)=0\)

\(\frac{1}{1003}+\frac{1}{1005}+\frac{1}{1007}\ne0\)

\(\Rightarrow x-2010=0\Rightarrow x=2010\)

20 tháng 4 2017

\(A=\frac{2010}{2011}\)

23 tháng 3 2017

x-1009/1001+x-4/1003+x+2010/1005=7

((x-1009/1001)-1))+((x-4/1003)-2)+((x+2010/1005)-4))=0

(x-2010/1001)+(x-2010/1003)+(x-2010/1005)=0

(x-2010)*(1/1001+1/1003+1/1005)=0

okk!!!!!!!!!!!!!!!

23 tháng 3 2017

Thanks bingodeo nhé :))

30 tháng 4 2019

Đề ???

\(A=\frac{1003+1007+\frac{2010}{113}+\frac{2010}{117}-\frac{1003}{119}-\frac{1007}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)

\(=\frac{2010+\frac{2010}{113}+\frac{2010}{117}-\frac{2010}{119}}{2011+\frac{2011}{113}+\frac{2011}{117}-\frac{2011}{119}}\)

\(=\frac{2010.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}{2011.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}\)

\(=\frac{2010}{2011}\)

30 tháng 4 2019

\(A=\frac{1003+1007+\frac{2010}{113}+\frac{2010}{117}-\frac{100}{119}-\frac{1007}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)

\(A=\frac{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)+       \(\frac{1+\frac{1}{113}+\frac{1}{117}-\frac{903}{119}-\frac{1}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)          

\(A=1+\frac{1+\frac{1}{113}+\frac{1}{117}-\frac{904}{119}}{2011+\frac{2011}{113}+\frac{2011}{117}-\frac{2011}{119}}\) 

\(A=\frac{1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}-\frac{90.}{119}}{2011+2011.\left(\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}\)

\(A=\frac{\frac{90}{119}}{2010+2011}\)

\(A=\frac{\frac{90}{119}}{4021}\)

                             

23 tháng 3 2020

\(\frac{x-1009}{1001}\)+\(\frac{x-4}{1003}\)+\(\frac{x+2010}{1005}\)=7

\(\frac{x-1009}{1001}\)+\(\frac{x-4}{1003}\)+\(\frac{x+2010}{1005}\)-7=0

\(\left(\frac{x-1009}{1001}-1\right)+\left(\frac{x-4}{1003}-2\right)+\left(\frac{x+2010}{1005}-4\right)=0\)

\(\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)

⇔(x-2010)\(\left(\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}\right)\)=0

⇔x-2010=0

⇔x=2010

Vậy x=2010

23 tháng 3 2020

\(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)

\(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}-7=0\)

\(\left(\frac{x-1009}{1001}-1\right)+\left(\frac{x-4}{1003}-2\right)\)\(+\left(\frac{x+2010}{1005}-4\right)=0\)

\(\frac{x-1009-1001}{1001}+\frac{x-4-2006}{1003}+\)\(\frac{x+2010-4020}{1005}=0\)

\(\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)

\(\left(x-2010\right)\left(\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}\right)=0\)

\(x-2010=0\left(do\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}>0\right)\)

\(x=2010\)

Vậy S = {2010}

27 tháng 5 2015

\(1-\frac{1003}{1005}=\frac{2}{1005}>\frac{2}{1007}=1-\frac{1005}{1007}\Rightarrow\frac{1003}{1005}<\frac{1005}{1007}\)

27 tháng 5 2015

ta có : 1-1003/1005=2/1005

1-1005/1007=2/1007

vì 2/1005>2/1007 nên 1003/1005<1005/1007

Ta có: \(\dfrac{x+1006}{1007}+\dfrac{x+1005}{1008}=\dfrac{x+1004}{1009}+\dfrac{x+1003}{1010}\)

\(\Leftrightarrow\dfrac{x+1006}{1007}+1+\dfrac{x+1005}{1008}+1=\dfrac{x+1004}{1009}+1+\dfrac{x+1003}{1010}+1\)

\(\Leftrightarrow\dfrac{x+2013}{1007}+\dfrac{x+2013}{1008}=\dfrac{x+2013}{1009}+\dfrac{x+2013}{1010}\)

\(\Leftrightarrow\dfrac{x+2013}{1007}+\dfrac{x+2013}{1008}-\dfrac{x+2013}{1009}-\dfrac{x+2013}{1010}=0\)

\(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{1}{1009}-\dfrac{1}{1010}\right)=0\)

mà \(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{1}{1009}-\dfrac{1}{1010}\ne0\)

nên x+2013=0

hay x=-2013

Vậy: S={-2013}

NM
18 tháng 3 2022

ta có : 

\(\frac{x-1009}{1001}-1+\frac{x-4}{1003}-2+\frac{x+2010}{1005}-4=0\)

hay \(\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\Leftrightarrow x-2010=0\)

hay x =2010

Vậy phương trình có nghiệm x = 2010