cho A=n-1/1+n-2/2+n-3/3+...+1/n-1
B=1/2+1/3+1/4+....+1/n
tính A:B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=(1-\frac{1}{1+2})(1-\frac{1}{1+2+3})(1-\frac{1}{1+2+3+4}) ...(1-\frac{1}{1+2+3+...+n}) \)
Xét công thức tổng quát ta có:
\(1-\frac{1}{1+2+3+...+n}=\frac{2+3+...n.}{1+2+3+..+n} =\frac{n(n+1)-2}{2}:\frac{n(n+1)}{2}=\frac{(n+2)(n-1)}{n(n+1)} \)
Áp dụng ct tổng quá ta có:
A=\(\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{(n-1)(n+2)}{n(n+1)} \)=\(\frac{(1.2.3...(n-1))(4.5.6...(n+2))}{(2.3.4...n)(3.4.5...(n+1))} \)=\(\frac{n+2}{3n} \)
=>A:B=\(\frac{n+2}{3n}:\frac{n+2}{n}=\frac{1}{3} \)
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!