K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2020

A B C D H

Xét tam giác BAD và tam giác BHD có:

\(\widehat{BAD}=\widehat{BHD}=90^0\)

BD là cạnh huyền chung

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của góc B)

\(\Rightarrow\Delta BAD=\Delta BHD\)(cạnh huyền - góc nhọn)

\(\Rightarrow\)BA = BH; AD = DH (2 cạnh tương ứng)

Xét tam giác DHC có HC > DC - DH (theo bất đẳng thức tam giác)\(\Rightarrow\)HC > DC - DA ( do AD = DH) (1)

Mà HC = BC - BH = BC - BA  ( do BA = BH ) (2)

Từ (1) và (2) \(\Rightarrow\)BC - BA > DC - DA ( ĐPCM)

 

a, Xét ΔABCΔABCVUÔNG tại A

Áp dụng định lý pitago ta có:

BC2=AB2+AC2BC2=AB2+AC2

⇒AB2=BC2−AC2⇒AB2=BC2−AC2

⇒AB2=102−62⇒AB2=102−62

⇒AB2=100−36⇒AB2=100−36

⇒AB2=64⇒AB2=64

⇒AB=√64=8⇒AB=64=8

VẬY AB=8 cm

b, Xét ΔABDΔABDvà ΔHBDΔHBDCÓ:

ˆBAD=ˆBHD=90độBAD^=BHD^=90độ

ˆABD=ˆHBDABD^=HBD^(do BD là tia phân giác của ˆBB^)

BD là cạnh chung

⇒ΔABD=ΔHBD⇒ΔABD=ΔHBD(ch-gn)

⇒AD=HD⇒AD=HD(2 CẠNH TƯƠNG ỨNG)

c,Do ΔABD=ΔHBD(câub)ΔABD=ΔHBD(câub)

⇒ˆBDA=ˆBDH⇒BDA^=BDH^(2 góc tương ứng)

lại có ˆADK=ˆHDCADK^=HDC^(đối đỉnh)

⇒ˆBDA+ˆADK=ˆBDH+ˆHDC⇒BDA^+ADK^=BDH^+HDC^

⇒ˆBDK=ˆBDC⇒BDK^=BDC^

Xét ΔKBDΔKBD VÀ ΔCBDΔCBDCÓ:

ˆABD=ˆCBDABD^=CBD^(Do BD là tia phân giác của ˆBB^)

BD là cạnh chung

ˆBDK=ˆBDC(cmt)BDK^=BDC^(cmt)

Do đó ΔKBD=ΔCBD(g−c−g)ΔKBD=ΔCBD(g−c−g)

⇒BK=BC⇒BK=BC(2 CẠNH TƯƠNG ỨNG)

⇒ΔKBC⇒ΔKBC cân tại B

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Lời giải:
Xét tam giác $BAD$ và $BHD$ có:
$BD$ chung

$\widehat{BAD}=\widehat{BHD}=90^0$

$\widehat{ABD}=\widehat{HBD}=\frac{\widehat{B}}{2}$

$\Rightarrow \triangle BAD=\triangle BHD$ (ch-gn)

$\Rightarrow BA=BH$

b.

Tam giác $BAD$ = tam giác $BHD$ (theo phần a) nên $DA=DH$ 

 

a: Xét ΔBAD vuông tại A và ΔBKD vuông tại K có

BD chung

\(\widehat{ABD}=\widehat{KBD}\)

Do đó: ΔBAD=ΔBKD

Suy ra: BA=BK

b: Ta có: ΔBAD=ΔBKD

nên DA=DK

mà DK<DC

nên DA<DC

24 tháng 4 2018