Cho A= 2+22+23+...+217+218 Chứng tỏ A chia hết cho 14.
AI TRẢ LỜI SỚM MK TICK CHO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 4 + 42 + 43 + 44 + ... + 460 (có 60 số; 60 chia hết cho 2)
A = (4 + 42) + (43 + 44) + ... + (459 + 460)
A = 4.(1 + 4) + 43.(1 + 4) + ... + 459.(1 + 4)
A = 4.5 + 43.5 + ... + 459.5
A = 5.(4 + 43 + ... + 459) chia hết cho 5
C2: = a2+2a+a+1=(a+1)2+a
a) \(7^{15}-7^{14}=7^{14}.7^1-7^{14}.1=7^{14}.\left(7-1\right)=7^{14}.6⋮6\)( Vì \(6⋮6\))
=) \(7^{15}-7^{14}⋮6\left(Đpcm\right)\)
b) \(9^{20}-9^{18}=9^{18}.9^2-9^{18}.1=9^{18}.\left(9^2-1\right)=9^{18}.80⋮10\)( Vì \(80⋮10\))
=) \(9^{20}-9^{18}⋮10\left(Đpcm\right)\)
a) Ta có : \(7^{15}-7^{14}=7^{14}.\left(7-1\right)=7^{14}.6\)\(⋮6\)
=> \(7^{15}-7^{14}⋮6\)(đpcm)
Ta có :A= (1*3*5*7*...*99)*(2*4*6*...*100):(2*4*6*..*100)
A=\(\frac{1\cdot2\cdot3\cdot4\cdot...\cdot100}{2\cdot4\cdot6\cdot...\cdot100}=\frac{\left(1\cdot2\cdot3\cdot4\cdot...\cdot50\right)\cdot\left(51\cdot52\cdot53\cdot...\cdot100\right)}{\left(1\cdot2\cdot3\cdot...\cdot50\right)\cdot\left(2\cdot2\cdot2\cdot...\cdot2\right)}\)(MẤU TÁCH 2 RA NGOÀI)
A=\(\frac{51\cdot52\cdot53\cdot...\cdot100}{2\cdot2\cdot2\cdot..\cdot2}\)
A=\(\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}\cdot...\cdot\frac{100}{2}=B\)
\(M=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\\ M=\left(2+2^2\right)+2\left(2+2^2\right)+...+2^{18}\left(2+2^2\right)\\ M=\left(2+2^2\right)\left(1+2+...+2^{18}\right)\\ M=6\left(1+2+...+2^{18}\right)⋮6\)
Lời giải:
$A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^{58}+2^{59}+2^{60})$
$=2(1+2+2^2)+2^4(1+2+2^2)+....+2^{58}(1+2+2^2)$
$=(1+2+2^2)(2+2^4+....+2^{58})$
$=7(2+2^4+....+2^{58})\vdots 7$.
A = 2+22+23+...+260
A = 2.(1+2+22) + 24.(1+2+22) + ... + 258.(1+2+22)
A = 2.7+24.7+...+258.7
A= 7. (2+24+...+258) chia hết cho 7
--> A chia hết cho 7 (ĐPCM)
A=2+22+23+...+218
A=(2+22+23)+...+(216+217+218)
A=14+...+216x(2+22+23)
A=14+...+216x14 chia hết cho 14