K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

f(a)=5a+1

f(b)=5b+1

mà a<b nên 5a+1<5b+1

vậy f(a)<f(b)

4 tháng 12 2015

y=f(x)=5x2 -4

a) f(x) =5x2 -4 = 5(-x)2 -4 = f (-x)  ; vì (-x)2 =x 2

b)  x1<x2<0 => x1+x2<0 và x1 - x2 <0

 f(x1) - f(x2) = (5x12- 4 )- (5x22 -4) = 5(x1-x2)(x1+x2)  >0 ( theo trên)

=>  f(x1) > f(x2

a: \(f\left(1\right)=a+b+c+d=a+3a+c+c+d=4a+2c+d\)

\(f\left(-2\right)=-8a+4b-2c+d\)

\(=-8a+4\left(3a+c\right)-2c+d\)

\(=-8a+12a+4c-2c+d\)

\(=4a+2c+d\)

=>f(1)=f(-2)

b: Đặt \(h\left(x\right)=0\)

=>(x-1)(x-4)=0

=>x=1 hoặc x=4

Đặt g(x)=0

\(\Leftrightarrow x^2+5x+1=0\)

\(\text{Δ}=5^2-4\cdot1\cdot1=21>0\)

Do đó PT có 2 nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-5-\sqrt{21}}{2}\\x_2=\dfrac{-5+\sqrt{21}}{2}\end{matrix}\right.\)

=>h(x) và g(x) khôg có nghiệm chung

9 tháng 6 2021

Đại số lớp 7#hoktot#

10 tháng 6 2021

bạn ơi mình nghĩ là đâu thể gọi dạng của f(x) được ?

3 tháng 6 2019

Ta có:
f(x) = ax2 + bx + c
=> f(-2) = a. (-2)2 - 2b + c = 4a - 2b + c
f(-3) = a.(-3)2 -3b + c = 9a - 3b + c
Mặt khác :
f(-2) + f(-3) = 4a - 2b + c + 9a - 3b + c = 13a + b + 2c = 0
=> f(-2) và f(-3) là 2 số đối nhau => f(-2).f(-3) < 0

3 tháng 6 2019

Cảm ơn bạn nhé.

16 tháng 4 2018

Bạn ơi đề sai đấy đáng ra bắt c/m f(-2).f(3)\(\le0\)nha bạn 

ta có f(x)=ax2+bx+c

\(\hept{\begin{cases}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{cases}}\)

Xét tổng f(-2)+f(3)=(4a-2b+c)+(9a+3b+c)

                            =4a-2b+c+9a+3b+c

                             =13a+b+2c

Lại có 13a+b+2c=0 (giả thiết)

=> f(-2)+f(3)=0

=> f(-2)=-f(3)

=> f(-2).f(3)=f(-2).[-f(-2)]

=-[f(-2)2 ]

Do [f(-2)2 ] \(\ge0\)=> -[f(-2)2 ]\(\le0\)

=> f(-2).f(3)\(\le0\)(đpcm)

25 tháng 6 2017

Ta có:

f(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c

f(3) = a.32 + b.3 + c = 9a + 3b + c

Suy ra: f(-2) + f(3) = 13a + b + 2c. Do đó f(-2).f(3) < 0 (đpcm)