K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 3 2019

\(f\left(x\right)=x^2-2mx+m^2-16\)

\(\left\{{}\begin{matrix}\Delta'>0\\x_1\le0< 1\le x_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}16>0\\f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\m^2-2m-15\le0\end{matrix}\right.\)

\(\Rightarrow-3\le m\le4\)

NV
6 tháng 5 2019

Đặt \(f\left(x\right)=x^2-2mx+m^2-16\)

Bài toán tương đương tìm m để pt có 2 nghiệm pb thỏa mãn: \(x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\1-2m+m^2-16\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\m^2-2m-15\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4\le m\le4\\-3\le m\le5\end{matrix}\right.\) \(\Rightarrow-3\le m\le4\)

17 tháng 3 2021

\(f\left(x\right)=x^2-2\left(m-1\right)x+m-2\)

Yêu cầu bài toán thõa mãn khi \(f\left(x\right)=0\) có hai nghiệm thỏa mãn \(x_1\le1< 3\le x_2\)

\(\left\{{}\begin{matrix}\Delta'=m^2-3m+3\ge0\\f\left(1\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in R\\-m+1\le0\\15-5m\le0\end{matrix}\right.\)

\(\Leftrightarrow m\ge3\)

7 tháng 2 2019

NV
13 tháng 4 2021

\(\Delta'=m^2-2m+3>0\) ; \(\forall x\)

Do đó bài toán thỏa mãn khi pt \(f\left(x\right)=0\) có 2 nghiệm thỏa mãn: \(x_1< -1< 2< x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}a.f\left(-1\right)< 0\\a.f\left(2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1.\left(1-2m+2m-3\right)< 0\\1\left(4+4m+2m-3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow6m+1< 0\Rightarrow m< -\dfrac{1}{6}\)

14 tháng 11 2017

Chọn D

Đặt  t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:

t2+ 2(1-m) t+ m2- 3 m+2= 0  (2)

Để pt (1) có nghiệm x 1 khi và chỉ khi pt (2) có nghiệm t 0 

TH1: Pt(2) có nghiệm : t1≤ ≤ t2

Khi đó; P= t1.t2 0 hay m2- 3m+ 2 0 hay 1≤  2

TH2: pt (2) có nghiệm

Kết luận: với 1 m 2 thì pt (1) có nghiệm x1

12 tháng 3 2020

\(f\left(x\right)=x^2-2mx+m^2-3m+2\)

\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)

Ta có : \(\left(x-m\right)^2\ge0\)

Để \(f\left(x\right)>0\)

\(\Leftrightarrow-3m+2>0\)

\(\Leftrightarrow m>-\frac{2}{3}\)

Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m>-\frac{2}{3}\)

P/s : K biết có sai chỗ nào k ạ ? Check hộ e :)

12 tháng 3 2020

Bài vừa rồi mik làm sai nhé :(( Làm lại :

\(f\left(x\right)=x^2-2mx+m^2-3m+2\)

\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)

Ta thấy : \(\left(x-m\right)^2\ge0\)

Để \(f\left(x\right)>0\)

\(\Leftrightarrow-3m+2>0\)

\(\Leftrightarrow2>3m\)

\(\Leftrightarrow m< \frac{2}{3}\)

Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m< \frac{2}{3}\)

26 tháng 11 2021

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)