-12,75-2,75:\(\left(-2\frac{3}{4}.x+11\right)=-13\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(81,624:4\frac{4}{3}-4,505\right)+125\frac{3}{4}}{\left[\left(\left(\frac{11}{25}\right)^2:0,08+3,53\right)^2-\left(2,75\right)^2\right]:\frac{13}{25}}\)
\(=\frac{\left(\frac{10203}{125}.\frac{3}{16}-\frac{901}{200}\right)+\frac{503}{4}}{\left[\left(\frac{121}{625}.\frac{25}{2}+\frac{353}{100}\right)^2-\frac{121}{16}\right].\frac{25}{13}}\)
\(=\frac{\left(15,3045-\frac{901}{200}\right)+\frac{503}{4}}{\left(\frac{14161}{400}-\frac{121}{16}\right).\frac{25}{13}}\)
\(=\frac{136,5495}{\frac{696}{13}}\)
\(=2,550493534\)
\(a,\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{11}{7}+\frac{11}{13}}\)
\(=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)
\(=\frac{3\left[\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right]}{11\left[\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right]}=\frac{3}{11}\)
Câu b tương tự
#)Giải :
b)\(\frac{5}{9}:\left(\frac{1}{3}+\frac{1}{4}\right)+\frac{5}{9}:\left(\frac{1}{9}+\frac{2}{3}\right)\)
\(=\frac{5}{9}:\frac{1}{3}+\frac{5}{9}:\frac{1}{4}+\frac{5}{9}:\frac{1}{9}+\frac{5}{9}:\frac{2}{3}\)
\(=\frac{5}{9}:\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{9}+\frac{2}{3}\right)\)
\(=\frac{5}{9}:\frac{49}{36}\)
\(=\frac{20}{49}\)
\(\frac{-1275}{100}-2,75:\left(\frac{-11}{4}.x+11\right)=\frac{-27}{2}\)
\(2,75:\left(\frac{-11}{4}.x+11\right)=\frac{-1275}{100}-\frac{-27}{2}\)
\(2,75:\left(\frac{-11}{4}.x+11\right)=\frac{-51}{4}-\frac{-54}{4}\)
\(2,75:\left(\frac{-11}{4}.x+11\right)=\frac{3}{4}\)
\(\frac{-11}{4}.x+11=2,75:\frac{3}{4}\)
\(\frac{-11}{4}.x+11=\frac{11}{4}:\frac{3}{4}\)
\(\frac{-11}{4}.x+11=\frac{11}{4}.\frac{4}{3}\)
\(\frac{-11}{4}.x+11=\frac{11}{3}\)
\(\frac{-11}{4}.x=\frac{11}{3}-11\)
\(\frac{-11}{4}.x=\frac{11}{3}-\frac{33}{3}\)
\(\frac{-11}{4}.x=\frac{-22}{3}\)
\(x=\frac{-22}{3}:\frac{-11}{4}\)
\(x=\frac{-22}{3}.\frac{4}{-11}\)
\(x=\frac{8}{3}\)
Vậy \(x=\frac{8}{3}\)