K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2024

a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\) 

   8 .x + 1 . x = 990

x . [ 8 +1 ] = 990

x . 9 = 990

x = 990 : 9

x = 110

9 tháng 1 2024

các bạn giúp mình với mình đang vội.

 

a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)

=>\(8\cdot x+1\cdot x=3305+1\)

=>\(9x=3306\)

=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)

b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)

=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)

=>\(2^x\left(1+2+4+8\right)=480\)

=>\(2^x\cdot15=480\)

=>\(2^x=32\)

=>\(2^x=2^5\)

=>x+5

 

16 tháng 9 2019

helps me

^-^

19 tháng 12 2024

(y - 1)2024 + |\(x+y-1\)| = 0

Vì (y - 1)2024 ≥ 0 ∀ y; |\(x+y-1\)| ≥ 0 ∀ \(x;y\)

(y - 1)2024 + |\(x+y-1\)| = 0 khi và chỉ khi 

 y - 1 = 0 và \(x+y-1\) = 0

y - 1 = 0 Suy ra y = 1. thay y = 1 vào biểu thức \(x+y-1=0\) ta có:

\(x+1-1=0\) ⇒ \(x=0-1+1\) \(x=0\)

Vậy \(x=0;y=1\) thay vào biểu thức A= \(x^{2024}\) + y2024 ta được:

A = 02024 + 12024 = 0 + 1 = 1 

NV
25 tháng 1 2024

\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)

Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)

\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)

Cộng vế:

\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)

13 tháng 7 2023

y? thế em 

14 tháng 7 2023

y^2

nhe cj

 

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Lời giải:

$y^2=36-8(x-2024)^2\leq 36$ (do $8(x-2024)^2\geq 0$)

$\Rightarrow y\leq 6$

Lại có: $y^2=36-8(x-2024)^2$ chẵn nên $y$ chẵn

$\Rightarrow y\in\left\{0; 2; 4; 6\right\}$

Nếu $y=0$ thì $8(x-2024)^2=36$

$\Rightarrow (x-2024)^2=\frac{36}{8}\not\in\mathbb{N}$ (loại) 

Nếu $y=2$ thì $8(x-2024)^2=36-y^2=36-2^2=32$

$\Rightarrow (x-2024)^2=4\Rightarrow x-2024=\pm 2$

$\Rightarrow x=2026$ hoặc $x=2022$ (tm) 

Nếu $y=4$ thì $8(x-2024)^2=36-4^2=20$

$\Rightarrow (x-2024)^2=\frac{20}{8}\not\in\mathbb{N}$ (loại) 

Nếu $y=6$ thì $8(x-2024)^2=36-6^2=0$

$\Rightarrow x-2024=0$

$\Rightarrow x=2024$ (tm)

Vậy............

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Đề không đầy đủ. Bạn coi lại.