Chứng tỏ rằng :
1/4 + 1/5 + 1/6 + ....... + 1/15 < 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\)
Mà \(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{1}{4}.4=1\)
=>\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< 1\) (1)
\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\)Mà \(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{8}.8=1\)
=> \(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< 1\) (2)
Từ (1) và (2)
=> A=\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{14}+\frac{1}{15}< 1+1\)
=> A<2
Ta có :
\(\frac{1}{4}< \frac{1}{3\cdot4};\frac{1}{5}< \frac{1}{4\cdot5};...;\frac{1}{15}< \frac{1}{14\cdot15}\)
\(\Rightarrow A< \frac{1}{3\cdot4}+\frac{1}{4.5}+...+\frac{1}{14\cdot15}\)
\(A< 1-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{14}-\frac{1}{15}\)
\(A< \frac{14}{15}< 2\left(đpcm\right)\)
Đặt A là tên biểu thức
\(A=1-\frac{15}{16}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{4n^2}\)
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2^2n^2}\)
\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(A< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(A< \frac{1}{2^2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(A< \frac{1}{2^2}\left(1-\frac{1}{n}\right)=\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)(đpcm)
Đặt \(A=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}\)
\(B=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{10}< \frac{1}{5}+\frac{1}{5}+...+\frac{1}{5}=\frac{6}{5}\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{17}< \frac{1}{11}+\frac{1}{11}+...+\frac{1}{11}=\frac{7}{11}\)
\(\Rightarrow B+C=A< \frac{6}{5}+\frac{7}{11}=\frac{101}{55}< \frac{110}{55}=2\)
\(\Rightarrow A< 2\left(đpcm\right)\)