K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

Đặt \(A=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}\)

\(B=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{10}< \frac{1}{5}+\frac{1}{5}+...+\frac{1}{5}=\frac{6}{5}\)

\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{17}< \frac{1}{11}+\frac{1}{11}+...+\frac{1}{11}=\frac{7}{11}\)

\(\Rightarrow B+C=A< \frac{6}{5}+\frac{7}{11}=\frac{101}{55}< \frac{110}{55}=2\)

\(\Rightarrow A< 2\left(đpcm\right)\)

22 tháng 3 2018

A=1/4+1/5+1/6+...+1/15

A=1.484

=>A<2

22 tháng 3 2018

ai có cách nhanh hơn ko

giúp mk với

9 tháng 8 2016

Ta có:

\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\)

Mà \(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{1}{4}.4=1\)

=>\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< 1\) (1)

\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\)Mà \(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{8}.8=1\) 

=> \(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< 1\)   (2)

Từ (1) và (2)

=> A=\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{14}+\frac{1}{15}< 1+1\)

=> A<2

 

 

17 tháng 8 2016

ê bài này ở đâu tek

2 tháng 8 2018

Ta có : 

\(\frac{1}{4}< \frac{1}{3\cdot4};\frac{1}{5}< \frac{1}{4\cdot5};...;\frac{1}{15}< \frac{1}{14\cdot15}\)

\(\Rightarrow A< \frac{1}{3\cdot4}+\frac{1}{4.5}+...+\frac{1}{14\cdot15}\)

\(A< 1-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{14}-\frac{1}{15}\)

\(A< \frac{14}{15}< 2\left(đpcm\right)\)

2 tháng 8 2018

cảm ơn nhưng chắc chắn k

1 tháng 4 2017

3/4 kick cho minh he

4 tháng 7 2018

phạm tiến dũng giải cụ tể đi

3 tháng 6 2017

Đặt A là tên biểu thức

\(A=1-\frac{15}{16}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{4n^2}\)

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2^2n^2}\)

\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(A< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(A< \frac{1}{2^2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(A< \frac{1}{2^2}\left(1-\frac{1}{n}\right)=\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)(đpcm)