K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

Giả sử đpcm là đúng , khi đó , ta có :

\(a^8+b^8+c^8\ge a^3b^3c^3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow a^8+b^8+c^8\ge a^3b^3c^3.\frac{ab+bc+ac}{abc}=a^2b^2c^2\left(ab+bc+ac\right)\left(1\right)\)

Vì a ; b ; c > 0 , áp dụng BĐT phụ \(x^2+y^2+z^2\ge xy+yz+xz\) , ta có :

\(a^8+b^8+c^8\ge a^4b^4+b^4c^4+a^4c^4\ge a^2b^2.b^2c^2+b^2c^2.c^2a^2+a^2b^2.c^2a^2=a^2c^2b^4+a^2b^2c^4+a^4b^2c^2\)

\(=\left(abc^2\right)^2+\left(bca^2\right)^2+\left(acb^2\right)^2\ge abc^2.bca^2+bca^2.acb^2+abc^2.acb^2=a^3b^2c^3+b^3a^3c^2+c^3b^3a^2\)

\(=a^2b^2c^2\left(ab+bc+ac\right)\)

Nên : \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ac\right)\)

=> BĐT được c/m ( 2 )

Từ ( 1 ) ; ( 2 ) => Điều giả sử là đúng

=> ĐPCM

18 tháng 3 2019

Ta có:

\(\dfrac{a^8+b^8+c^8}{a^3b^3c^3}\geq \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Leftrightarrow a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)(*)\)

Áp dụng BĐT AM - GM:

\(\left\{\begin{matrix} a^8+b^8\geq 2a^4b^4\\ b^8+c^8\geq 2b^4c^4\\ c^8+a^8\geq 2c^4a^4\end{matrix}\right.\Rightarrow a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\)

Tiếp tục áp dụng AM - GM:

\(a^8+b^8+a^4b^4+c^8\geq 4\sqrt[4]{a^{12}b^{12}c^8}=4a^3b^3c^2\)

\(b^8+c^8+b^4c^4+a^8\geq 4b^3c^3a^2\)

\(c^8+a^8+c^4a^4+b^8\geq 4c^3a^3b^2\)

Cộng lại: \(3(a^8+b^8+c^8)+(a^4b^4+b^4c^4+c^4a^4)\geq 4a^2b^2c^2(ab+bc+ca)\)

\(a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\Rightarrow 4(a^8+b^8+c^8)\geq 4a^2b^2c^2(ab+bc+ac)\)

hay \(a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)\Rightarrow (*)\) (đúng)

Ta có đpcm

10 tháng 12 2017

Chứng minh BĐT phụ:\(x^2+y^2+z^2\ge xy+yz+zx\)

Thật vậy: \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)    (Đúng)

Áp dụng BĐT trên, ta có: 

\(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4+a^4b^2c^2=a^2b^2c^2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow A=\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{a^2b^2c^2\left(a^2+b^2+c^2\right)}{a^3b^3c^3}=\frac{a^2+b^2+c^2}{abc}\)     \(\left(1\right)\)

Lại áp dụng BĐT ban đầu, ta có: 

\(\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}=\frac{bc}{abc}+\frac{ca}{abc}+\frac{ab}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)           \(\left(2\right)\)

Từ (1) và (2) suy ra \(A\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi a=b=c > 0

Vậy \(A=\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) với \(a;b;c>0\)

4 tháng 6 2020

\(\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Leftrightarrow\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\frac{a^8+b^8+c^8}{a^2b^2c^2}\ge ab+bc+ca\Leftrightarrow\Sigma\frac{a^6}{b^2c^2}\ge ab+bc+ca\)

Do \(a^2+b^2+c^2\ge ab+bc+ca\)nên ta cần chứng minh \(\Sigma\frac{a^6}{b^2c^2}\ge a^2+b^2+c^2\)(*)

Đặt \(\left(a^2,b^2,c^2\right)\rightarrow\left(x,y,z\right)\). Khi đó (*) trở thành \(\frac{x^3}{yz}+\frac{y^3}{zx}+\frac{z^3}{xy}\ge x+y+z\)

Theo BĐT Bunyakovsky dạng phân thức, ta có:

\(\frac{x^3}{yz}+\frac{y^3}{zx}+\frac{z^3}{xy}=\frac{x^4}{xyz}+\frac{y^4}{xyz}+\frac{z^4}{xyz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3xyz}\)

\(\ge\frac{\left(\frac{\left(x+y+z\right)^2}{3}\right)^2}{\frac{\left(x+y+z\right)^3}{9}}=x+y+z\left(Q.E.D\right)\)

Đẳng thức xảy ra khi x = y = z hay a = b = c

13 tháng 7 2016

a) Ta có : \(x+y+\frac{2}{x}+\frac{2}{y}=\left(2x+\frac{2}{x}\right)+\left(2y+\frac{2}{y}\right)-\left(x+y\right)\)

Áp dụng bất đẳng thức Cauchy, ta có : \(2x+\frac{2}{x}\ge2\sqrt{2x.\frac{2}{x}}=4\) (1)

Tương tự : \(2y+\frac{2}{y}\ge2\sqrt{2y.\frac{2}{y}}=4\)(2)   ;   \(x+y\le2\Rightarrow-\left(x+y\right)\ge-2\)(3)

Cộng (1) , (2) , (3) theo vế được: \(\left(2x+\frac{2}{x}\right)+\left(2y+\frac{2}{y}\right)-\left(x+y\right)\ge4+4-2=6\)

Hay \(x+y+\frac{2}{x}+\frac{2}{y}\ge6\) (đpcm)

b) Áp dụng bất đẳng thức \(x^2+y^2+z^2\ge xy+yz+zx\) được : 

\(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\ge\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\)

Tương tự : \(\left(a^2b^2\right)^2+\left(b^2c^2\right)^2+\left(c^2a^2\right)^2\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)

\(\Rightarrow a^4+b^4+c^4\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^8+b^8+c^8\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{a^2b^2c^2\left(a^2+b^2+c^2\right)}{a^3b^3c^3}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ac}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

12 tháng 7 2017

hình như dấu + dưới mẫu là nhân mới đúng

19 tháng 2 2020

Áp dụng bđt Cauchy-schwarz dạng engel ta có:

1. \(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{\left(a+b+c\right)^2}{\left(a+2b\right)+\left(b+2c\right)+\left(c+2a\right)}=\frac{a+b+c}{3}\)

Dấu "=" \(\Leftrightarrow\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\Leftrightarrow a=b=c\)

2. \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{\left(2a+3b\right)+\left(2b+3c\right)+\left(2c+3a\right)}=\frac{a+b+c}{5}\)

Dấu "=" \(\Leftrightarrow a=b=c\)

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

NV
21 tháng 10 2019

\(P=\frac{a^2}{2ab+3ac}+\frac{b^2}{2bc+3ab}+\frac{c^2}{2ac+3bc}\)

\(P\ge\frac{\left(a+b+c\right)^2}{5\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}=\frac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

1 tháng 1 2020

1/ a/dung bđt Cauchy - Schwarz dạng phân thức: \(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\ge\frac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\frac{a+b+c}{4}=\frac{3}{4}\)

2/ a/dung bđt bunhiacopxki :

\(S^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=3\cdot2\left(a+b+c\right)=6\cdot6=36\)

=> \(S\le6\)

14 tháng 3 2017

Áp dụng BĐT Cauchy cho 2 số dương ta được :

\(\dfrac{a^2}{b+3c}+\dfrac{b+3c}{16}\ge2\sqrt{\dfrac{a^2}{b+3c}\times\dfrac{b+3c}{16}}=\dfrac{2a}{4}\)

Suy ra \(\dfrac{a^2}{b+3c}\ge\dfrac{2a}{4}-\dfrac{b+3c}{16}\)

Cmtt ta cũng được :

\(\dfrac{b^2}{c+3a}\ge\dfrac{2b}{4}-\dfrac{c+3a}{16}\) \(\dfrac{c^2}{a+3b}\ge\dfrac{2c}{4}-\dfrac{a+3b}{16}\)

Khi đó :

\(\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{2a}{4}-\dfrac{b+3c}{16}+\dfrac{2b}{4}-\dfrac{c+3a}{16}+\dfrac{2c}{4}-\dfrac{a+3b}{16}\)

\(\dfrac{2a}{4}-\dfrac{b+3c}{16}+\dfrac{2b}{4}-\dfrac{c+3a}{16}+\dfrac{2c}{4}-\dfrac{a+3b}{16}=\dfrac{a+b+c}{4}\)

Vậy \(\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{a+b+c}{4}\)

7 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\dfrac{a+b+c}{4}\) (đpcm)

Dấu " = " xảy ra khi \(a=b=c\)