CHO \(a>b>c>d>e\)
CM \(a^2+b^2>\frac{c+d+e}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a>b>c>d>e
=>a.a>b.b>c.c>d.d>e.e
=>a.a+b.b>a+b+c
Hay \(a^2+b^2\)>a+b+c
=>\(a^2+b^2>\frac{a+b+c}{2}\)
NH4HCO3 → NH3 + CO2 + H2O
A......................B........C........D
NH4HCO3 + NaCl → NaHCO3 + NH4Cl
A....................................E................F
NaHCO3 → Na2CO3 + CO2 + H2O
E....................G................C......D
NaHCO3 + NaOH → Na2CO3 + H2O
E..................................G..............D
2NH4Cl + Ca(OH)2 → CaCl2 + 2NH3 + 2H2O
F.......................................H...........B........D
Na2CO3 + Ca(OH)2 → CaCO3 + 2NaOH
G.....................................I
NaHCO3 + Ca(OH)2 → CaCO3 + 2H2O + NaOH
E........................................I.............D
Na2CO3 + CO2 + H2O → 2NaHCO3
G..................C......D.............E
P/s: thách nx đi
Bài 1:
a) \(x^2\le x\)
\(\Leftrightarrow x^2-x\le0\)
\(\Leftrightarrow x\left(x-1\right)\le0\)
Mà x > x - 1 nên \(\hept{\begin{cases}x\ge0\\x-1\le0\end{cases}}\Leftrightarrow0\le x\le1\)
b) \(\hept{\begin{cases}ab=2\\bc=3\\ac=54\end{cases}}\Rightarrow\left(abc\right)^2=324=\left(\pm18\right)^2\)
\(TH1:abc=18\Rightarrow\hept{\begin{cases}c=9\\a=6\\b=\frac{1}{3}\end{cases}}\)
\(TH2:abc=-18\Rightarrow\hept{\begin{cases}c=-9\\a=-6\\b=\frac{-1}{3}\end{cases}}\)
Thân heo vừa béo lại vừa ù
Bảy nổi ba chìm với nước lu
Chết đuối quẫy chân không ai cứu
Đứa nào mà cứu, đứa ấy ngu
a, a2+b2+c2 >= ab+bc+ca
<=>a2+b2+c2-ab-bc-ca >= 0
<=>2(a2+b2+c2-ab-bc-ca) >= 0
<=>2a2+2b2+2c2-2ab-2bc-2ca >= 0
<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) >= 0
<=>(a-b)2+(b-c)2+(c-a)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)
Vậy...
b, a2+b2+1 >= ab+a+b
<=>a2+b2+1-ab-a-b >= 0
<=>2(a2+b2+1-ab-a-b) >= 0
<=>2a2+2b2+2-2ab-2a-2b >= 0
<=>(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1) >= 0
<=>(a-b)2+(a-1)2+(b-1)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}\)
Vậy...
c, a2+b2+c2+3 >= 2(a+b+c)
<=>a2+b2+c2+3-2a-2b-2c >= 0
<=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1) >= 0
<=>(a-1)2+(b-1)2+(c-1)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\Leftrightarrow a=b=c=1}\)
Vậy...
d, a2+b2+c2 >= 2(ab+bc-ca)
<=>a2+b2+c2-2ab-2bc+2ca >= 0
<=>(a-b-c)2 >= 0 (luôn đúng)
Dấu "=" xảy ra khi a=b=c
Vậy...
e,ta có: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\Leftrightarrow\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2\ge0\)
\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}-\frac{a^2+2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\frac{2a^2+2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (1)
Lại có: \(\left(\frac{a+b}{2}\right)^2\ge ab\Leftrightarrow\frac{a^2+2ab+b^2}{4}-\frac{4ab}{4}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (2)
Từ (1) và (2) => \(ab\le\left(\frac{a+b}{2}\right)^2\le\frac{a^2+b^2}{2}\)
Dấu "=" xảy ra khi a = b
4FeS2 + 11O2 \(\underrightarrow{t^o}\) 2Fe2O3 + 8SO2
Ta co: A là Fe2O3 hoặc SO2
vì Fe2O3 không td vs O2
=> A là SO2 và B là Fe2O3
2SO2 + O2 \(\underrightarrow{t^o}\) 2SO3
em viết sai chỗ C + D -> E
=> C là SO3
SO3 + Fe2O3 ---> Fe2(SO4)3
=> E là Fe2(SO4)3
sửa: C + B -> E
\(4FeS_2+7O_2-t^0->2Fe_2O_3+4SO_2\)
\(2SO_2+O_2-t^0->2SO_3\)
\(SO_3+H_2O-->H_2SO_4\)
\(3Cu+8H_2SO_4\left(đ\right)-t^0->3CuSO_4+2SO_2\uparrow+4H_2O\)
\(SO_2+H_2O-->H_2SO_3\)
\(H_2SO_3+2KOH->K_2SO_3+2H_2O\)
\(K_2SO_3+Cu\left(NO_3\right)_2-->2KNO_3+CuSO_3\)
\(CuSO_3+H_2SO_4-->CuSO_4+SO_2+H_2O\)
\(SO_2+Cl_2+2H_2O-->2HCl+H_2SO_4\)
A:SO2 E:H2SO4
B: Fe2O3 F:CuSO4
C:SO3 G:H2SO3
D:H2O I:CuSO3
K:KNO3 L:HCl
Áp dụng BĐT Cauchy – Schwarz, ta được:
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{\left(a+b+c\right)^3}{b+c+a+c+a+b}\)
\(=\frac{\left(a+b+c\right)^3}{2\left(a+b+c\right)}=\frac{\left(a+b+c\right)^2}{2}\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)
ミ★长 - ƔξŦ★彡vãi cả cauchy-schwarz cho bậc 3: \("\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{\left(a+b+c\right)^3}{b+c+c+a+a+b}\)
Thiết nghĩ nên sửa đề \(a,b,c>0\) thôi chứ là gì có d? Mà nếu a >b >c > d > 0 thì liệu dấu = có xảy ra?
Áp dụng BĐT Cauchy-Scwarz ta có: \(LHS\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)
Vì a>b>c>d>e
=>a>c và a>d a>e ;b>c và b>d và b>e
=> a.a+b.b>c+d+e
=>\(a^2+b^2>\frac{c+d+e}{2}\)