K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

TA có:\(a>2b\)

\(\Rightarrow a-b>2b-b\)

\(\Rightarrow a-b>b\)

\(\Rightarrow\frac{a-b}{b}>1\left(ĐPCM\right)\)

8 tháng 5 2018

Áp dụng BĐT Cauchy Sshwarz, ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\) 

Mà a+b+c>2

\(\Rightarrow VT>1\) (đpcm)

29 tháng 5 2017

Ta có :

a > b => \(\frac{1}{a}< \frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}< 0\)

a > b => a - b > 0 \(\Rightarrow\frac{1}{a-b}>0\)
Từ 2 ý trên và theo giả thuyết đề bài thì không tồn tại 2 giá trị a,b > 0 thõa mãn 

29 tháng 5 2017

Bỏ chỗ a>b đi 

24 tháng 4 2019

a) ta có a>b (cộng 2 và 2 vế )

<=>  a+2 > b+2  (1)
ta có 2>-3 (cộng b vào 2 vế )

b+2>b-3  (2)

từ (1) và (2) => a+2 > b-3

3 tháng 8 2019

giair dùm mình đi