K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

Ta cần chứng minh: \(a^{2n}+b^{2n}\le c^{2n}\)(1)

* Với n = 1 thì \(a^2+b^2=c^2\)(Đúng với định lý Py - ta - go)

* Với n = 2 thì \(a^4+b^4=a^4+a^2b^2+b^4+a^2b^2-2a^2b^2\)

\(=a^2\left(a^2+b^2\right)+b^2\left(a^2+b^2\right)-2a^2b^2\)

\(=\left(a^2+b^2\right)^2-2a^2b^2\le\left(c^2\right)^2=c^4\)(Đúng với (1))

Giả sử (1) đúng với n, tức là \(a^{2n}+b^{2n}\le c^{2n}\)

Ta cần chứng minh (1) đúng với n + 1

\(\Rightarrow a^{2\left(n+1\right)}+b^{2\left(n+1\right)}=a^{2n+2}+b^{2n+2}\)

\(=a^{2n}.a^2+b^{2n}.b^2\)

\(=a^{2n}.a^2+a^2.b^{2n}+b^{2n}.b^2+a^{2n}.b^2-a^2.b^{2n}-a^{2n}.b^2\)

\(=a^2\left(a^{2n}+b^{2n}\right)+b^2\left(a^{2n}+b^{2n}\right)-a^2.b^{2n}-a^{2n}.b^2\)

\(=\left(a^2+b^2\right)\left(a^{2n}+b^{2n}\right)-a^2.b^{2n}-a^{2n}.b^2\)

\(\le c^2.c^{2n}-a^2.b^{2n}-a^{2n}.b^2=c^{2n+2}\)(đúng)

Vậy \(a^{2n}+b^{2n}\le c^{2n}\)(đpcm)

26 tháng 1 2019

tội nghiệp 4 năm rồi mà dell cs ai trả lời

12 tháng 2 2018

Áp dụng định lý PITAGO :

Ta có : \(c^2=a^2+b^2\)

Nhân cả 2 vế với n thì ta có :

\(\Rightarrow\)\(a^{2n}+b^{2n}=c^{2n}\)

Vậy \(a^{2n}+b^{2n}=c^{2n}\left(ĐPCM\right)\)

2 tháng 3 2018

Làm đúng cho sai không công bằng cút nào nhé trẩu

24 tháng 12 2021

Áp dụng PTG ta có: \(c^2=a^2+b^2\) với \(n=1\)

Giả sử đúng với \(n=k\)

\(\Rightarrow A_k=a^{2k}+b^{2k}\le c^{2k}\)

Cần cm nó cũng đúng với \(n=k+1\)

\(\Rightarrow A_{k+1}=a^{2k+2}+b^{2k+2}=c^{2k+2}\\ \Rightarrow\left(a^{2k}+b^{2k}\right)\left(a^2+b^2\right)-a^2b^{2k}-a^{2k}b^2\le c^{2k}\cdot c^2=c^{2k+2}\)

Vậy BĐT đúng với \(n=k+1\)

\(\RightarrowĐpcm\)

11 tháng 9 2019

a, b, c là 3 cạnh của tam giác vuông => a, b, c>0 

Chứng minh  \(a^{2n}+b^{2n}\le c^{2n}\)  (1)  quy nạp theo n.

+) Với n=1 \(a^2+b^2=c^2\)  ( đúng)

+) Với n=2 \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=c^4-2a^2b^2< c^4\)

=> (1) đúng với n=2

+) G/s: (1) đúng với n  . Nghĩa là: \(a^{2n}+b^{2n}\le c^{2n}\)

Ta chứng minh (1) đúng với n+1

Thật vậy ta có:

\(a^{2\left(n+1\right)}+b^{2\left(n+1\right)}=a^{2n+2}+b^{2n+2}=a^{2n}.a^2+b^{2n}.b^2^{ }\)

\(=\left(a^{2n}+b^{2n}\right)\left(a^2+b^2\right)-a^2.b^{2n}-a^{2n}.b^2\le c^{2n}.c^2-a^2b^{2n}-a^{2n}.b^2< c^{2n}.c^2=c^{2\left(n+1\right)}\)

=> (1) đúng với n+1

Vậy (1) đúng với mọi n>0

'Vậy \(a^{2n}+b^{2n}\le c^{2n}\)

23 tháng 3 2017

cô Loan và mọi người ơi giúp tôi với