CM: \(\sqrt{2}+2< 3.5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\)
\(\frac{2}{\sqrt{3}}P=\frac{2}{\sqrt{3}}.\sqrt{a+1}+\frac{2}{\sqrt{3}}.\sqrt{b+1}+\frac{2}{\sqrt{3}}.\sqrt{c+1}\)
\(\le\frac{\frac{4}{3}+a+1}{2}+\frac{\frac{4}{3}+b+1}{2}+\frac{\frac{4}{3}+c+1}{2}\)
\(=\frac{7}{2}+\frac{1}{2}=4\)
\(\Rightarrow P\le\frac{4.\sqrt{3}}{2}=2\sqrt{3}< 3,5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2A = 2/1.3+2/3.5+....+2/(2n-1).(2n+1)
= 1-1/3+1/3-1/5+.....+1/2n-1 - 1/2n+1
= 1-1/2n+1 < 1
=> A < 1/2
=> ĐPCM
k mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{2\sqrt{2+\sqrt{2}}}< \sqrt{2\sqrt{2+\sqrt{4}}}\)
\(=\sqrt{2\sqrt{2+2}}=\sqrt{2\sqrt{4}}\)
\(=\sqrt{2^2}=2\)
Vậy \(\sqrt{2\sqrt{2+\sqrt{2}}}< 2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đầu tiên ta có
\(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}>1\)
Đặt \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}=a\left(a>1\right)\)
\(\Rightarrow2+\sqrt{2+\sqrt{2+\sqrt{2}}}=a^2\)
\(\Leftrightarrow a^2-2=\sqrt{2+\sqrt{2+\sqrt{2}}}\)
Theo đề bài ta cần chứng minh
\(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}< \frac{1}{3}\)
\(\Leftrightarrow\frac{2-a}{2-\left(a^2-2\right)}< \frac{1}{3}\)
\(\Leftrightarrow\frac{2-a}{4-a^2}< \frac{1}{3}\)
\(\Leftrightarrow\frac{2-a}{\left(2+a\right)\left(2-a\right)}< \frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2+a}< \frac{1}{3}\)
\(\Leftrightarrow3< 2+a\)
\(\Leftrightarrow1< a\)(đúng)
\(\Rightarrow\)ĐPCM
Ta có:
\(\sqrt{2}+2=2+\sqrt{2}=3,414\)
Mà 3,414 < 3,5, nên:
\(\sqrt{2}+2< 3.5\)
khong duppc tinh ra so ban oi