K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

k) 3x(z−2)+5(−x−2)

=3xz−6x−5x−10

=3xz−x−10

=x(3z−1)−10

AH
Akai Haruma
Giáo viên
26 tháng 1 2022

1.

$k^5-k^3+k^2-1=(k^5-k^3)+(k^2-1)=k^3(k^2-1)+(k^2-1)=(k^2-1)(k^3+1)$

$=(k-1)(k+1)(k+1)(k^2-k+1)=(k-1)(k+1)^2(k^2-k+1)$

2. 

$2m^2-72+96n-32n^2$

$=2(m^2-36+48n-16n^2)$

$=2[m^2-(16n^2-48n+36)]$

$=2[m^2-(4n-6)^2]=2(m-4n+6)(m+4n-6)$

 

AH
Akai Haruma
Giáo viên
26 tháng 1 2022

3.
$(b-3a)^2-4b^2+12ab=(b-3a)^2-(4b^2-12ab)=(b-3a)^2-4b(b-3a)$

$=(b-3a)(b-3a-4b)=(b-3a)(-3a-3b)=3(3a-b)(a+b)$

4.

$(a^2-3a-10)^2-4(a^2-10)^2+12a(a^2-10)$

$=(a^2-3a-10)^2-4(a^2-10)(a^2-10-3a)$

$=(a^2-3a-10)(a^2-3a-10-4a^2+40)$

$=(a^2-3a-10)(-3a^2-3a+30)$

$=-3(a^2-3a-10)(a^2+a-10)$

$=-3(a-5)(a+2)(a^2+a-10)$

6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

26 tháng 9 2023

a) 3x(x + 1) - 5y(x + 1)

= (x + 1)(3x - 5y)

b) 3x(x - 6) - 2(x - 6)

= (x - 6)(3x - 2)

c) 4y(x - 1) - (1 - x)

= 4y(x - 1) + (x - 1)

= (x - 1)(4y + 1)

d) (x - 3)³ + 3 - x

= (x - 3)³ - (x - 3)

= (x - 3)[(x - 3)² - 1]

= (x - 3)(x - 3 - 1)(x - 3 + 1)

= (x - 3)(x - 4)(x - 2)

26 tháng 9 2023

e) 7x(x - y) - (y - x)

= 7x(x - y) + (x - y)

= (x - y)(7x + 1)

h) 3x³(2y - 3z) - 15x(2y - 3z)²

= (2y - 3z)[3x³ - 15x(2y - 3x)]

= 3x(2y - 3x)[x² - 5(2y - 3x)]

= 3x(2y - 3x)(x² - 10y + 3x)

= 3x(2y - 3x)(x² + 3x - 10y)

k) 3x(x + 2) + 5(-x - 2)

= 3x(x + 2) - 5(x + 2)

= (x + 2)(3x - 5)

l) 18x²(3 + x) + 3(x + 3)

= (x + 3)(18x² + 3)

= 3(x + 3)(6x² + 1)

m) 7x(x - y) - (y - x)

= 7x(x - y) + (x - y)

= (x - y)(7x + 1)

n) 10x(x - y) - 8y(y - x)

= 10x(x - y) + 8y(x - y)

= (x - y)(10x + 8y)

= 2(x - y)(5x + 4y)

17 tháng 12 2023

a: \(2x^2+3xy-14y^2\)

\(=2x^2+7xy-4xy-14y^2\)

\(=\left(2x^2+7xy\right)-\left(4xy+14y^2\right)\)

\(=x\left(2x+7y\right)-2y\left(2x+7y\right)\)

\(=\left(2x+7y\right)\left(x-2y\right)\)

b: \(\left(x-7\right)\left(x-5\right)\left(x-3\right)\left(x-1\right)+7\)

\(=\left(x-7\right)\left(x-1\right)\left(x-5\right)\left(x-3\right)+7\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)+7\)

\(=\left(x^2-8x\right)^2+15\left(x^2-8x\right)+7\left(x^2-8x\right)+105+7\)

\(=\left(x^2-8x\right)^2+22\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)^2+8\left(x^2-8x\right)+14\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)\left(x^2-8x+8\right)+14\left(x^2-8x+8\right)\)

\(=\left(x^2-8x+8\right)\left(x^2-8x+14\right)\)

c: \(\left(x-3\right)^2+\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)^2+2\left(x-3\right)\left(3x-1\right)-\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]-\left(3x-1\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]\)

\(=\left(x-3+6x-2\right)\left(x-3-3x+1\right)\)

\(=\left(7x-5\right)\left(-2x-2\right)\)

\(=-2\left(x+1\right)\left(7x-5\right)\)

d: \(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)

\(=x^2y-xy^2+y^2z-yz^2+zx\left(z-x\right)\)

\(=\left(x^2y-yz^2\right)-\left(xy^2-y^2z\right)+xz\left(z-x\right)\)

\(=y\left(x^2-z^2\right)-y^2\left(x-z\right)-xz\left(x-z\right)\)

\(=y\cdot\left(x-z\right)\left(x+z\right)-\left(x-z\right)\left(y^2+xz\right)\)

\(=\left(x-z\right)\left(xy+zy-y^2-xz\right)\)

\(=\left(x-z\right)\left[\left(xy-y^2\right)+\left(zy-zx\right)\right]\)

\(=\left(x-z\right)\left[y\cdot\left(x-y\right)-z\left(x-y\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)

23 tháng 12 2016

\(z\left(3x-5z\right)-x\left(5z-3x\right)\)z(3x-5z)-x(5z-3x)

=z(3x-5z)+x(3x-5z)

=(z+x)(3x-5z)

23 tháng 12 2016

phần ghi dư, bỏ đi nha.

16 tháng 8 2023

x³ - 3x²y + 3xy² - y³ - z³

= (x³ - 3x²y + 3xy² - y³) - z³

= (x - y)³ - z³

= (x - y - z)[(x - y)² + (x - y)z + z²]

= (x - y - z)(x² - 2xy + y² + xz - yz + z³)

--------------------

x² - y² + 8x + 6y + 7

= (x² + 8x + 16) - (y² - 6y + 9)

= (x + 4)² - (y - 3)²

= (x + 4 - y + 3)(x + 4 + y - 3)

= (x - y + 7)(x + y + 1)

a: \(=\left(x^3-3x^2y+3xy^2-y^3\right)-z^3\)

\(=\left(x-y\right)^3-z^3\)

\(=\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x-y\right)+z^2\right]\)

\(=\left(x-y-z\right)\left(x^2-2xy+y^2+xz-yz+z^2\right)\)

b: \(=x^2+8x+16-y^2+6y-9\)

=(x+4)^2-(y-3)^2

=(x+4+y-3)(x+4-y+3)

=(x+y+1)(x-y+7)

22 tháng 11 2023

a: \(2y\left(x+2\right)-3x-6\)

\(=2y\left(x+2\right)-3\left(x+2\right)\)

\(=\left(x+2\right)\left(2y-3\right)\)

b: \(3\left(x+4\right)-x^2-4x\)

\(=3\left(x+4\right)-\left(x^2+4x\right)\)

\(=3\left(x+4\right)-x\left(x+4\right)\)

\(=\left(x+4\right)\left(3-x\right)\)

c: \(2\left(x+5\right)-x^2-4x\)

\(=2x+10-x^2-4x\)

\(=-x^2-2x+10\)

\(=-x^2-2x-1+11\)

\(=11-\left(x^2+2x+1\right)\)

\(=11-\left(x+1\right)^2\)

\(=\left(\sqrt{11}-x-1\right)\left(\sqrt{11}+x+1\right)\)

d: \(x^2+6x-3x-18\)

\(=\left(x^2+6x\right)-\left(3x+18\right)\)

\(=x\left(x+6\right)-3\left(x+6\right)\)

\(=\left(x+6\right)\left(x-3\right)\)

26 tháng 8 2021

`b)x^3+y^3+z^3-3xyz`

`=x^3+3xy(x+y)+z^3-3xy(x+y)-3xyz`

`=(x+y)^3+z^3-3xy(x+y+z)`

`=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y)`

`=(x+y+z)(x^2+2xy+y^2-zx-yz-3xy+z^2)`

`=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)`

26 tháng 8 2021

giúp mk vs mk cần gấp T^T

 

12 tháng 8 2023

\(\left(3x+1\right)^2-\left(3x-1\right)^2\)

\(=\left(3x+1-3x+1\right)\left(3x+1+3x-1\right)\)

\(=2\cdot6x\)

\(=12x\)

_________

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)

\(=2x\cdot2y\)

\(=4xy\)

12 tháng 8 2023

\(\left(x+y\right)^3+\left(x-y\right)^3\)

\(=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=2x\cdot\left(x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right)\)

\(=2x\cdot\left(x^2+3y^2\right)\)

______

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3+3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2-xy-xz-yz\right)\)

25 tháng 1 2019

nhanh hộ mk cái

25 tháng 1 2019

x^10 + x^5 + 1 
= x^10 + x^9 - x^9 + x^8 - x^8 + x^7 - x^7 + x^6 - x^6 + x^5 + x^5 - x^5 + x^4 - x^4 + x^3 - x^3 + x^2 - x^2 + x - x + 1 
= (x^10 + x^9 + x^8) - (x^9 + x^8 + x^7) + (x^7 + x^6 + x^5) - (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) - (x^3 + x^2 + x) + (x^2 + x + 1) 
= x^8 (x^2 + x + 1) - x^7 (x^2 + x + 1) + x^5 (x^2 + x + 1) - x^4 (x^2 + x + 1) + x^3 (x^2 + x + 1) - x (x^2 + x + 1) + (x^2 + x + 1) 
= (x^2 + x + 1) (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)