Giải phương trình:(5x-3)3 +(4x+8)3=(9x+5)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
(- (x - 3))/2 - 2 = 5(x + 2)/4
=> \(\dfrac{-\left(x-3\right)-4}{2}=\dfrac{5\left(x+2\right)}{4}\)
=> \(\dfrac{-2\left(x-3\right)-8}{4}=\dfrac{5\left(x+2\right)}{4}\)
=. -2x + 6 - 8 = 5x + 10
=> 7x = -12
=> x = -12/7
Các câu còn lại có cách làm tương tự là tính lần lượt trong ngoặc trước, quy đồng về cùng mẫu số để triệt tiêu mẫu và xử lý phần tử số có x như câu đầu tiên em nhé!
Chúc em học vui vẻ nha!
2) Ta có: \(\dfrac{2\left(2x+1\right)}{5}-\dfrac{6+x}{3}=\dfrac{5-4x}{15}\)
\(\Leftrightarrow\dfrac{6\left(2x+1\right)}{15}-\dfrac{5\left(6+x\right)}{15}=\dfrac{5-4x}{15}\)
\(\Leftrightarrow12x+6-30-5x-5+4x=0\)
\(\Leftrightarrow11x-29=0\)
\(\Leftrightarrow x=\dfrac{29}{11}\)
Vậy: \(S=\left\{\dfrac{29}{11}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: \(x^2+3x+4=0\)
\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)
Do đó: Phương trình vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: \(\sqrt{4x^2+4x+3}=8\)
\(\Leftrightarrow4x^2+4x+1+2-64=0\)
\(\Leftrightarrow4x^2+4x-61=0\)
\(\Delta=4^2-4\cdot4\cdot\left(-61\right)=992\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-4-4\sqrt{62}}{8}=\dfrac{-1-\sqrt{62}}{2}\\x_2=\dfrac{-4+4\sqrt{62}}{8}=\dfrac{-1+\sqrt{62}}{2}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
Mấy câu còn lại mình giải rồi
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: ĐKXĐ: x>=-2
\(PT\Leftrightarrow3\cdot3\sqrt{x+2}=\dfrac{1}{2}\cdot2\sqrt{x+2}+16\)
=>\(9\sqrt{x+2}-\sqrt{x+2}=16\)
=>\(8\sqrt{x+2}=16\)
=>\(\sqrt{x+2}=2\)
=>x+2=4
=>x=2
b: ĐKXĐ: \(x\in R\)
\(5+\sqrt{x^2-4x+4}=9\)
=>\(\left|x-2\right|=4\)
=>x-2=4 hoặc x-2=-4
=>x=6 hoặc x=-2
Ta có 5x -3 + 4x + 8 = 9x +5
Đặt 5x -3 = a , 4x + 8 = b , ta có phương trình tương đương
\(â^3+b^3=\left(a+b\right)^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)-a^3-b^3=0\)
\(\Rightarrow3ab\left(a+b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3ab=0\\a+b=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\\a+b=0\end{matrix}\right.\)
Đến đây dễ rồi, thay vào tìm x , y là xong
\(\)
Trước hết ta chứng minh tính chất quen thuộc: cho 3 số thực \(a;b;c\) sao cho \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)
Thật vậy, ta có: \(a^3+b^3+c^3=a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(-c\right)\) (do \(a+b+c=0\Rightarrow a+b=-c\))
\(=\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+c\right)c+c^2\right)+3abc\)
\(=3abc\)
Áp dụng vào bài toán, pt đã cho tương đương:
\(\left(5x-3\right)^3+\left(4x+8\right)^3-\left(9x+5\right)^3=0\)
\(\Leftrightarrow\left(5x-3\right)^3+\left(4x+8\right)^3+\left(-9x-5\right)^3=0\) (1)
Do \(\left(5x-3\right)+\left(4x+8\right)+\left(-9x-5\right)=0\)
\(\Rightarrow\left(5x-3\right)^3+\left(4x+8\right)^3+\left(-9x-5\right)^3=3\left(5x-3\right)\left(4x+8\right)\left(-9x-5\right)\)
Vậy \(\left(1\right)\Rightarrow3.\left(5x-3\right)\left(4x+8\right)\left(-9x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-3=0\\4x+8=0\\-9x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{5}\\x=-2\\x=\frac{-5}{9}\end{matrix}\right.\)