giúp mình làm vd nào cũng đc ạ, mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
11 c)
\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)
12 a) Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)
áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm )
b) áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)
Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)
\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Em tách ra 1-2 bài/1 câu hỏi để mọi người hỗ trợ nhanh nhất nha!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(∘ backwin\)
\(CD:1 × 4 = 4 ( c m )\)
\(CR:1 × 3 = 3 ( c m )\)
\(Chiều\) \(cao:1 × 4 = 4 ( c m )\)
\(V: 4 × 3 × 4 = 48 ( c m ^3 )\)
\(Đ/s:48cm^3\)
Ví dụ 1:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{5}=\frac{z}{10}=\frac{x-y+z}{9-5+10}=\frac{70}{14}=5\)
\(\Leftrightarrow\hept{\begin{cases}x=5.9=45\\y=5.5=25\\z=5.10=50\end{cases}}\)
Ví dụ 2, 3: Tương tự.
Ví dụ 4:
\(\frac{x}{y}=\frac{7}{10}\Leftrightarrow\frac{x}{7}=\frac{y}{10},\frac{y}{z}=\frac{10}{13}\Leftrightarrow\frac{y}{10}=\frac{z}{13}\Rightarrow\frac{x}{7}=\frac{y}{10}=\frac{z}{13}\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{10}=\frac{z}{13}=\frac{x+y+z}{7+10+13}=\frac{120}{30}=4\)
\(\Leftrightarrow\hept{\begin{cases}x=4.7=28\\y=4.10=40\\z=4.13=52\end{cases}}\)
Ví dụ 5:
\(3x=4y=5z\Leftrightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x-y-z}{20-15-12}=\frac{-42}{-7}=6\)
\(\Leftrightarrow\hept{\begin{cases}x=6.20=120\\y=6.15=90\\z=6.12=72\end{cases}}\).