CMR 1/1^2 +1/2^2+ .......+1/n^2<5/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a^2>a^2-1\forall a\)
\(\Rightarrow a^2>\left(a-1\right)\left(a+1\right)\)
\(\Rightarrow\dfrac{1}{a^2}< \dfrac{1}{\left(a-1\right)\left(a+1\right)}=\dfrac{1}{2}\cdot\left(\dfrac{1}{a-1}\right)\left(\dfrac{1}{a+1}\right)\)
Áp dụng, ta có
\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1+\dfrac{1}{2^2}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
= \(1+\dfrac{1}{2^2}+\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)
= 1+ \(\dfrac{1}{4}\)+\(\dfrac{1}{2}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
=1+ \(\dfrac{2}{3}-\dfrac{1}{2}\cdot\left(\dfrac{1}{n}+\dfrac{1}{n+1}\right)\) < \(1+\dfrac{2}{3}=\dfrac{5}{3}\left(ĐPCM\right)\)
(Mik mượn chỗ bình luận ké nha!!)
Người Ấy Là Ai-eqt đẹp đó :)
Tham khảo nè:
1/2^2 + 1/3^2 + 1/4^2 + ... + 1/n^2 < 2/3 chứng minh
k² > k² - 1 = (k-1)(k+1)
⇒ 1/k² < 1/[(k-1).(k+1)] = [1/(k-1) - 1/(k+1)]/2 (*)
Áp dụng (*), ta có:
1/2² + 1/3² + 1/4² + ... + 1/n²
< 1/2² + 1/(2.4) + 1/(3.5) + ... + 1/[(n-1).(n+1)]
= 1/2² + [1/2 - 1/4 + 1/3 - 1/5 + ... + 1/(n-1) - 1/(n+1)]/2
= 1/2² + [1/2 + 1/3 - 1/n - 1/(n+1)]/2
= 2/3 - [1/n + 1/(n+1)]/2 < 2/3
Ta có:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
....................
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)
\(=2-\frac{1}{n}\)
đpcm
Tham khảo nhé~
a)\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}<1\)
\(\Rightarrow2M=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}<1\)
\(2M-M=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\right)<1\)
\(\Rightarrow M=1-\frac{1}{2016^2}\)<1
=>(DPCM)
CÂU b và c làm tương tự