K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

Autofix: ON

\(VT=a+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\)

\(=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)

\(\ge4\sqrt[4]{a-b\cdot\frac{4}{\left(a-b\right)\left(b+1\right)^2}\cdot\frac{b+1}{2}\cdot\frac{b+1}{2}}-1\)

\(\ge4-1=3=VP\)

NV
1 tháng 3 2020

Bạn tham khảo:

Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến

27 tháng 11 2017

Áp dụng BĐT AM-GM ta có: 

\(VT=a^2+b^2+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)

\(=1+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)

\(=1+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{1}{a}+2a\right)+\left(\frac{1}{b}+2b\right)-\left(a+b\right)\)

\(\ge3+2\sqrt{\frac{1}{a}\cdot2a}+2\sqrt{\frac{1}{b}\cdot2b}-\sqrt{2\left(a^2+b^2\right)}\)

\(\ge3+4\sqrt{2}-\sqrt{2}=3+3\sqrt{2}=3\left(1+\sqrt{2}\right)\)

Khi \(a=b=\frac{1}{\sqrt{2}}\) 

NV
12 tháng 2 2020

\(a+\frac{4}{b\left(a-b\right)^2}=a-b+b+\frac{4}{b\left(a-b\right)^2}\ge a-b+2\sqrt{\frac{4b}{b\left(a-b\right)^2}}=a-b+\frac{4}{a-b}\ge4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)

b/ \(a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+b\ge2\sqrt{\frac{4\left(a-b\right)}{\left(a-b\right)\left(b+1\right)^2}}+b=\frac{4}{b+1}+b+1-1\ge4-1\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

1 tháng 5 2017

Vì nó thik thì nó \(\ge\) thôi

Đúng 100%

Đúng 100%

Đúng 100%

18 tháng 12 2019

\(\frac{\Sigma_{cyc}a^3\left(b-c\right)}{\Sigma_{cyc}a^2\left(b-c\right)}=\frac{-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}=a+b+c\ge3\sqrt[3]{abc}\)

18 tháng 12 2019

Phùng Minh Quân BĐT cuối: \(a+b+c\ge3\sqrt[3]{abc}\) xảy ra khi a = b = c thì cái mẫu thức: \(\Sigma_{cyc}a^2\left(b-c\right)=0\) vô lí!

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

2 tháng 9 2015

Bài hay quá!

Theo bất đẳng thức Cô-Si cho 3 số dương ta có

\(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\sqrt[3]{\left(1+\frac{1}{a}\right)^4\left(1+\frac{1}{b}\right)^4\left(1+\frac{1}{c}\right)^4}\).

Do đó ta chỉ cần chứng minh \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3.\) (Lúc đó kết hợp hai bất đẳng thức ta được ngay điều phải chứng minh).

Thực vậy, đầu tiên áp dụng bất đẳng thức Cô-Si cho 3 số dương ta có

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=1+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{1}{abc}\ge\)

\(\ge1+\frac{3}{\sqrt[3]{abc}}+\frac{3}{\sqrt[3]{a^2b^2c^2}}+\frac{1}{abc}=\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3.\)

Mặt khác ta có \(2+abc=1+1+abc\ge3\sqrt[3]{abc}\to\frac{1}{\sqrt[3]{abc}}\ge\frac{3}{2+abc}\to\)

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3.\)    (ĐPCM)