cho 3 sô dương a,b,c có tổng = 1/ CMR:\(ab+bc+ac\ge9abc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(VT=\frac{ab}{ab+c}+\frac{ac}{ac+b}+\frac{bc}{bc+a}\)
\(=\frac{ab}{ab+\left(a+b+c\right)c}+\frac{ac}{ac+\left(a+b+c\right)b}+\frac{bc}{bc+\left(a+b+c\right)a}\)
\(=\frac{ab}{\left(b+c\right)\left(c+a\right)}+\frac{ac}{\left(a+b\right)\left(b+c\right)}+\frac{bc}{\left(a+b\right)\left(c+a\right)}\)
\(=\frac{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Cần chứng minh \(\frac{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}\)
\(\Leftrightarrow a^2b+a^2c+ab^2+ac^2+b^2c+bc^2\ge6abc\)
BĐT cuối luôn đúng theo AM-GM

Ta có : \(0\le a\le b\le1\Rightarrow\hept{\begin{cases}a-1\le0\\b-1\le0\end{cases}}\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\)
\(\Rightarrow ab+1\ge a+b\Rightarrow\frac{1}{ab+1}\le\frac{1}{a+b}\)
\(\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(c\ge0\right)\)
Mà \(\frac{c}{a+b}\le\frac{2c}{a+b+c}\left(c\ge0\right)\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
CM tương tự ta cũng có : \(\hept{\begin{cases}\frac{b}{ac+1}\le\frac{2b}{a+b+c}\\\frac{a}{bc+1}\le\frac{2a}{a+b+c}\end{cases}}\)
Cộng vế với vế ta được :
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (ĐPCM)
Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
Cho abc là số dương thỏa mãn 0<a<b<c<1
Chứng minh rằng \(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<2
Từ giả thiết ta có:
(1-b) (1-c)>0 và 1 -(b+c)+bc>0 và bc+1>b+c và \(\frac{a}{bc+1}\)<\(\frac{a}{b+c}\)<\(\frac{a}{a+b}\)(1)
Tương tự ta cũng có :\(\frac{b}{ac+1}\)<\(\frac{b}{a+c}\)<\(\frac{b}{a+b}\)(2);\(\frac{c}{ab+1}\)<c<1(3)
Cộng (1),(2),(3) theo vế ta được :\(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<\(\frac{a+b}{a+b}\)+1=2
Vậy \(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<2

ta có:
\(c+ab=c.1+ab=c\left(a+b+c\right)+ab=ca+cb+c^2+ab=\left(c+a\right)\left(c+b\right)\)
tương tự như vậy thì \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)
áp dụng bđt cô si ta có:
\(\frac{a}{a+c}+\frac{b}{b+c}\ge2\sqrt{\frac{ab}{\left(c+a\right)\left(b+c\right)}};\frac{b}{a+b}+\frac{c}{c+a}\ge2\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}};\frac{a}{a+b}+\frac{c}{b+c}\ge2\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{c+a}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\left(Q.E.D\right)\)

Chứng minh: \(x^3+y^3\ge xy\left(x+y\right)\left(1\right)\)
\(x^3+y^3\ge xy\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^3\ge4xy\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) đúng
\(\Rightarrow\left(1\right)\) đúng
Áp dụng BĐT \(x^3+y^3\ge xy\left(x+y\right)\)
\(\dfrac{a^3+b^3}{ab}+\dfrac{b^3+c^3}{bc}+\dfrac{c^3+a^3}{ca}\)
\(\ge\dfrac{ab\left(a+b\right)}{ab}+\dfrac{bc\left(b+c\right)}{bc}+\dfrac{ca\left(c+a\right)}{ca}\)
\(=2\left(a+b+c\right)\)


Áp dụng BĐT Cô-si: \(x+y\ge2\sqrt{xy}\)với \(x,y>0\), ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)(dấu '=' xảy ra \(\Leftrightarrow a=b\))
Tương tự, ta cũng có:
\(\frac{a}{c}+\frac{c}{a}\ge2\left('='\Leftrightarrow a=c\right);\frac{c}{b}+\frac{b}{c}\ge2\left('='\Leftrightarrow b=c\right)\)
Vì vậy
\(\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}\ge6\)(dấu ''='' xảy ra khi \(a=b=c\))
\(\Leftrightarrow\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\ge6\)
\(\Leftrightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\Leftrightarrow\frac{ab+bc+ca}{abc}\ge9\Leftrightarrow ab+bc+ca\ge9abc\)