K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

\(\left\{{}\begin{matrix}x-y+1=0\\2x^2-xy+3y^2-7x-12y+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\2\left(y-1\right)^2-\left(y-1\right)y+3y^2-7\left(y-1\right)-12y+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\4y^2-22y+10=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\2y^2-11y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\\left(2y^2-10y\right)-\left(y-5\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\2y\left(y-5\right)-\left(y-5\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\\left(y-5\right)\left(2y-1\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y-1\\y-5=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=y-1\\2y-1=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x=\frac{-1}{2}\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy hpt đã cho có 2 nghiệm (x,y) \(\in\left\{\left(4;5\right),\left(\frac{-1}{2};\frac{1}{2}\right)\right\}\)

9 tháng 3 2019

\(\left\{{}\begin{matrix}x-y+1=0\\2x^2-xy+3y^2-7x-12y+1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=y-1\\2\left(y-1\right)^2-\left(y-1\right)y+3y^2-7\left(y-1\right)-12y+1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=y-1\\2y^2-4y+2-y^2+y+3y^2-7y+7-12y+1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=y-1\\4y^2-22y+10=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\4y^2-20y-2y+10\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=y-1\\4y\left(y-5\right)-2\left(y-5\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\2\left(y-5\right)\left(2y-1\right)=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=y-1\\\Leftrightarrow\left[{}\begin{matrix}y-5=0\\2y-1=0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=5-1=4\\x=\frac{1}{2}-1=-\frac{1}{2}\end{matrix}\right.\\\Leftrightarrow\left[{}\begin{matrix}y=5\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là : (a, b) ∈ {4, 5; -1/2, 1/2}

14 tháng 12 2021

\(PT\left(2\right)\Leftrightarrow x=y-1\\ PT\left(1\right)\Leftrightarrow2\left(y-1\right)^2+y\left(1-y\right)+3y^2=7\left(y-1\right)+12y-1\\ \Leftrightarrow2y^2-11y+5=0\\ \Leftrightarrow\left[{}\begin{matrix}y=5\Leftrightarrow x=4\\y=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy ...

15 tháng 8 2017

\(\left\{{}\begin{matrix}2x^2-xy+3y^2-7x-12y+1=0\left(1\right)\\x-y+1=0\left(2\right)\end{matrix}\right.\)

Từ (2) SUY RA : \(x=y-1\)

Thay x = y - 1 vào (1) được :

\(2\left(y-1\right)^2-\left(y-1\right)y+3y^2-7\left(y-1\right)-12y+1=0\Leftrightarrow2y^2-4y+2-y^2+y+3y^2-7y+7-12y+1=0\Leftrightarrow4y^2-22y+10=0\) \(\Leftrightarrow\) \(\left(y-5\right)\left(2y-1\right)=0\Leftrightarrow\left[{}\begin{matrix}y=5\\y=\dfrac{1}{2}\end{matrix}\right.\)

Suy ra x = 4 hoặc x = -1/2

Vậy nghiệm của hệ pt là (4;5) (-1/2;1/2)

NV
19 tháng 1 2021

\(x^3-7x^2y+16xy^2-12y^3=0\)

\(\Leftrightarrow\left(x-3y\right)\left(x-2y\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=3y\end{matrix}\right.\)

Thế xuống pt dưới giải đơn giản

NV
21 tháng 1 2021

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) thì pt đầu trở thành:

\(\dfrac{a^2-b^2}{2}-4b^2+3b=a\Leftrightarrow a^2-9b^2+6b=2a\)

\(\Leftrightarrow\left(a-3b\right)\left(a+3b\right)-2\left(a-3b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a+3b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=2-3b\end{matrix}\right.\) \(\Rightarrow...\)

1)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(-1;2\right)\)

2)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1;2\right)\)

3)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

4) 

HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1;2\right)\)

 

NV
30 tháng 7 2021

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?