Giải phương trình : \(\frac{x\left(3-x\right)\left(x^2+3\right)}{\left(x+1\right)^2}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{\left(x+3\right)-x}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Rightarrow x\left(x+3\right)=10=2.\left(2+3\right)\)
\(\Rightarrow x=2\)
pt <=> \(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

bạn tham khảo thêm cách này nha Shonogeki No Soma
ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\\x\ne-1\end{cases}}\)
Đặt \(a=\left(x-1\right)^3;b=x^3;c=\left(x+1\right)^3\)
pt đã cho đc viết lại thành
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}}\) (kí hiệu [..] mới đúng nha)
- TH1: a = -b hay \(\left(x-1\right)^3=-x^3\) \(\Leftrightarrow2x^3-3x^2+3x-1=0\) \(\Leftrightarrow x=\frac{1}{2}\) (Nhận)
- TH2: b = -c hay \(\left(x+1\right)^3=-x^3\) \(\Leftrightarrow2x^3+3x^2+3x+1=0\) \(\Leftrightarrow x=-\frac{1}{2}\) (Nhận)
- TH3: c = -a hay \(\left(x+1\right)^3=-\left(x-1\right)^3\) \(\Leftrightarrow x=0\) (Loại)
KL: \(S=\left\{\frac{1}{2};-\frac{1}{2}\right\}\)
\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}=\frac{1}{3x\left(x^2+2\right)}\)
\(\Leftrightarrow4x^8+15x^6+12x^4+8x^2-6=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x^2+3\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{1}{2}\end{cases}}\)