Giải Phương trình: (3x-7)(x-2)2(3x-5)=8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
\(\left(3x-7\right)\left(x-2\right)^2\left(3x-5\right)=8\)
\(\Leftrightarrow\left(3x-7\right)\left[3\left(x-2\right)\right]^2\left(3x-5\right)=8.3^2\)
\(\Leftrightarrow\left(3x-7\right)\left(3x-6\right)^2\left(3x-5\right)=72\)(1)
Đặt 3x - 6 = t
Khi đó (1) trở thành: \(\left(t-1\right)t^2\left(t+1\right)=72\)
\(\Leftrightarrow t^2\left(t^2-1\right)=72\Leftrightarrow t^4-t^2-72=0\)
\(\Leftrightarrow t^2\left(t^2-9\right)+8\left(t^2-9\right)=0\)
\(\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\)
\(\Leftrightarrow t^2-9=0\left(t^2+8>0\right)\Leftrightarrow\orbr{\begin{cases}t=3\\t=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=3\\3x-6=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Tập nghiệm của phương trình đã cho là: \(S=\left\{3;1\right\}\)
a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)
Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)
\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)
Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)
\(\Leftrightarrow2x^2+2-2x^2-2x=0\)
\(\Leftrightarrow-2x+2=0\)
\(\Leftrightarrow-2x=-2\)
hay x=1(nhận)
Vậy: S={1}
b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)
Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)
\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)
\(\Leftrightarrow-56x-1=0\)
\(\Leftrightarrow-56x=1\)
hay \(x=-\dfrac{1}{56}\)(nhận)
Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)
c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)
Ta có: \(\dfrac{5}{3x+2}=2x-1\)
\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)
\(\Leftrightarrow6x^2-3x+4x-2-5=0\)
\(\Leftrightarrow6x^2+x-7=0\)
\(\Leftrightarrow6x^2-6x+7x-7=0\)
\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)
d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)
Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)
\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)
\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
a: 5-3x=6x+7
=>-3x-6x=7-5
=>-9x=2
=>\(x=-\dfrac{2}{9}\)
b: \(\dfrac{3x-2}{6}-5=3-\dfrac{2\left(x+7\right)}{4}\)
=>\(\dfrac{3x-2}{6}+\dfrac{x+7}{2}=8\)
=>\(\dfrac{3x-2+3\left(x+7\right)}{6}=8\)
=>3x-2+3x+14=48
=>6x+12=48
=>6x=36
=>\(x=\dfrac{36}{6}=6\)
c: \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
=>\(\left(x-1\right)\left(5x+3\right)-\left(3x-8\right)\left(x-1\right)=0\)
=>(x-1)(5x+3-3x+8)=0
=>(x-1)(2x+11)=0
=>\(\left[{}\begin{matrix}x-1=0\\2x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{11}{2}\end{matrix}\right.\)
d: \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
=>\(\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
\(ĐK:x^2-3x+5\ge0\)
Đặt \(\sqrt{x^2-3x+5}=a\ge0\)
\(PT\Leftrightarrow a+a^2-5=7\\ \Leftrightarrow a^2+a-12=0\\ \Leftrightarrow\left(a-3\right)\left(a+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=3\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow\sqrt{x^2-3x+5}=3\\ \Leftrightarrow x^2-3x+5=9\\ \Leftrightarrow x^2-3x-4=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
đặt \(x^2-3x=y\)
\(pt\Leftrightarrow\sqrt{y+5}+y=7\\ \Leftrightarrow\sqrt{y+5}=7-y\\ \Leftrightarrow\left\{{}\begin{matrix}y+5=\left(7-y\right)^2\\7-y\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y+5=49-14y+y^2\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y^2-15y+44=0\\y\le7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(y^2-11y\right)-\left(4y-44\right)=0\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(y-11\right)\left(y-4\right)=0\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=4\\y=11\end{matrix}\right.\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=4\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x^2-3x=4\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x^2-3x-4=0\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)\left(x+1\right)\\y\le7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\\y\le7\end{matrix}\right.\)
Vậy \(x\in\left\{4;-1\right\}\)
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
\(\left(3x-7\right)\left(x-2\right)^2\left(3x-5\right)=8\)
\(\Leftrightarrow\left(9x^2-36x+35\right)\left(x^2-4x+4\right)=8\)
\(\Leftrightarrow9\cdot\left(9x^2-36x+35\right)\left(x^2-4x+4\right)=8\cdot9\)
\(\Leftrightarrow\left(9x^2-36x+35\right)\left(9x^2-36x+36\right)=72\)
Đặt \(9x^2-36x+35=a\)
\(pt\Leftrightarrow a\left(a+1\right)=72\)
\(\Leftrightarrow a^2+a-72=0\)
\(\Leftrightarrow a^2+9a-8a-72=0\)
\(\Leftrightarrow a\left(a+9\right)-8\left(a+9\right)=0\)
\(\Leftrightarrow\left(a+9\right)\left(a-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-9\\a=8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}9x^2-36x+35=-9\\9x^2-36x+35=8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3x^2\right)-2\cdot3x\cdot6+6^2+8=0\\\left(3x^2\right)-2\cdot3x\cdot6+6^2-9=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3x-6\right)^2=-8\left(loai\right)\\\left(3x-6\right)^2=\left(\pm3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\left\{3;1\right\}\end{matrix}\right.\)
Vậy....