K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

Áp dụng bđt Bunhyakovsky:

\(\left(a^2+1\right)\left(1+b^2\right)\ge\left(a+b\right)^2=4\)

Dấu "=" xảy ra khi a=b=1

6 tháng 3 2019

Bạn ơi áp dụng chi đó

20 tháng 8 2018

câu hỏi ko tl cx thấy xàm xàm xàm xmà

18 tháng 7 2017

ques này nhiều ng` hỏi r` thay ab+bc+ca=1 vào rồi phân tích rút gọn

26 tháng 9 2017

Do ab + bc + ca = 1 nên ta có : 

\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}=a\sqrt{\frac{\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)}{a^2+ab+ac+bc}}\)

\(=a\sqrt{\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}{\left(a+b\right)\left(a+c\right)}}=a\sqrt{\left(b+c\right)^2}=a\left(b+c\right)=ab+ac\text{ }\left(1\right)\)

Tương tự : \(b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}=ab+bc\)  (2)và \(c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=bc+ac\) (3)

Cộng vế với vế của (1) ; (2) ; (3) lại ta được :

\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}+b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}+c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=2\left(ab+bc+ac\right)=2\)

26 tháng 9 2017

khó thế bạn

9 tháng 12 2018

\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}+1-1\ge\left(a+b+1\right)2\sqrt{\left(ab\right)^2}+\frac{\left(2+1\right)^2}{a+b+1}-1\)

\(=2\left(a+b+1\right)+\frac{9}{a+b+1}-1\ge2\sqrt{ab}+1+2\sqrt{\frac{9\left(a+b+1\right)}{a+b+1}}-1\ge2+6=8\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a^2=b^2\left(1\right)\\\frac{2}{a+b}=1\left(2\right)\\a+b+1=\frac{9}{a+b+1}\left(3\right)\end{cases}}\)

pt \(\left(1\right)\)\(\Leftrightarrow\)\(a=b\) ( vì a, b > 0 ) 

pt \(\left(2\right)\)\(\Leftrightarrow\)\(a=b=1\)

pt \(\left(3\right)\)\(\Leftrightarrow\)\(\left(a+b+1\right)^2=9\)\(\Leftrightarrow\)\(a+b+1=3\) ( đúng vì \(a=b=1\) ) 

Vậy GTNN của \(A\) là \(8\) khi \(a=b=1\)

Chúc bạn học tốt ~ 

20 tháng 12 2017

1) https://diendantoanhoc.net/topic/92682-gi%E1%BA%A3i-pt-nghi%E1%BB%87m-nguyen5x2xyy27x2y/

4 tháng 6 2019

a)Có A=\(\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)(ĐKXĐ \(x\ne2,-2,-1\))

=\(\left(\frac{2-x}{\left(2-x\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}-\frac{x}{\left(2-x\right)\left(2+x\right)}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)

=\(\frac{2-x+2x+4-x}{\left(2-x\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

=\(\frac{6\left(2-x\right)\left(x+1\right)}{6\left(2-x\right)\left(x+2\right)^2}\)

=\(\frac{x+1}{\left(x+2\right)^2}\)

b)Có A=\(\frac{x+1}{\left(x+2\right)^2}\)

Để A>0 <=> x+1>0 <=>x>-1

c) Có x2+3x+2=0

<=> x2+2x+x+2=0

<=> x(x+2)+(x+2)=0

<=>(x+1)(x+2)=0

<=> x=-1 hoặc x=-2

12 tháng 3 2016

Ta có:

\(1+a^2=ab+bc+ca+a^2=\left(a+b\right)\left(a+c\right)\)tương tự ta tính được GT của bt.

19 tháng 2 2019

a) \(-ĐKXĐ:x\ne\pm2;1\)

Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)

\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)

b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)

\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)

Vậy với mọi x thỏa mãn x>1 thì A > 0

c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)

\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vậy x = -1;-2

11 tháng 7 2020

em mới lớp 7 nên không rành lắm về bất đẳng thức ạ :((

Ta có :\(a.b=1< =>a=\frac{1}{b}\)

Áp dụng bất đẳng thức : 

Ta được \(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)

\(\ge\left(a+b+1\right)\left(2ab\right)+\frac{4}{a+b}\)

\(=\left(a+b+1\right).2+\frac{4}{a+b}\)

Áp dụng Bất đẳng thức Cauchy cho 2 số không âm 

\(2\left(a+b+1\right)+\frac{4}{a+b}\ge2\sqrt[2]{\left[2\left(a+b\right)+2\right].\frac{4}{a+b}}\)

\(=2\sqrt[2]{\frac{8\left(a+b\right)+8}{a+b}}=2\sqrt[2]{\frac{8\left(\frac{1}{b}+b\right)+8}{\frac{1}{b}+b}}\left(+\right)\)

Áp dụng bất đẳng thức Cauchy cho 2 số không âm :

\(\frac{1}{b}+b\ge2\sqrt[2]{\frac{1}{b}.b}=2\)

Khi đó \(\left(+\right)< =>2\sqrt[2]{\frac{8.2+8}{2}}=2\sqrt[2]{12}=\sqrt[2]{48}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=1\)

Vậy \(Min_A=\sqrt{48}\)khi \(a=b=1\)