tìm m để bất phương trình \(\sqrt{x-1}+\sqrt{10-x}+2\sqrt{\left(x-1\right)\left(10-x\right)}\ge m\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sqrt{\left(m+2\right)x+m}\ge\left|x-1\right|\Leftrightarrow\left(m+2\right)x+m\ge x^2-2x+1\)
\(\Leftrightarrow m\ge\frac{x^2-4x+1}{x+1}\) (vì \(x\in\left[0;2\right]\)
Xét hàm số \(f\left(x\right)=\frac{x^2-4x+1}{x+1}\) trên đoạn \(\left[0;2\right]\) ta có
\(f'\left(x\right)=\frac{x^2+2x-5}{\left(x+1\right)^2};f'\left(x\right)=0\Leftrightarrow x=-1+\sqrt{6}\)
Lập bảng biến thiên ta được
\(f\left(0\right)=1;f\left(2\right)=-1\)
\(f\left(-1+\sqrt{6}\right)=2\sqrt{6}-6\)
Vậy bất phương trình đã cho có nghiệm thì \(m>\) min (0;2] \(f\left(x\right)=f\left(-1+\sqrt{6}\right)=2\sqrt{6-6}\)
\(\sqrt{x-1}+\sqrt{5-x}=t\Rightarrow t^2=4+2\sqrt{\left(5-x\right)\left(x-1\right)}\)
\(\Rightarrow\sqrt{\left(5-x\right)\left(x-1\right)}=\frac{t^2-4}{2}\)
\(\Rightarrow t+\frac{1}{2}t^2-2\ge m\)
\(\Rightarrow\left\{{}\begin{matrix}t\ge0\\t=\sqrt{x-1}+\sqrt{5-x}\le\sqrt{\left(x-1+5-x\right)\left(1+1\right)}=2\sqrt{2}\end{matrix}\right.\)
Bất phương trình trở thành:
Tìm giá trị lớn nhất của m để \(f\left(t\right)=\frac{1}{2}t^2+t-2\ge m\) có nghiệm đúng với \(\forall t\in\left[0;2\sqrt{2}\right]\)
\(\Leftrightarrow m\le max_{\left[0;2\sqrt{2}\right]}f\left(t\right)\)
Xét hàm \(f\left(t\right)=\frac{1}{2}t^2+t-2\) trên \(\left[0;2\sqrt{2}\right]\)
Do \(-\frac{b}{2a}=-1\notin\left[0;2\sqrt{2}\right]\) nên cực trị rơi vào 2 đầu mút
\(f\left(0\right)=-2;f\left(2\sqrt{2}\right)=2+2\sqrt{2}\)
\(\Rightarrow max_{\left[0;2\sqrt{2}\right]}f\left(t\right)=f\left(2\sqrt{2}\right)=2+2\sqrt{2}\)
\(\Rightarrow m\le2+2\sqrt{2}\Rightarrow m_{max}=2+2\sqrt{2}\)
1:
\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)
\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)
Vì $\sqrt{1+x}\ge 0,\sqrt{8-x}\ge 0,\sqrt{(1+x)(8-x)}\ge 0$
$\to \sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}\ge 0$
mà $\sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}=m$
=> m≥0
Đặt :
\(t=\sqrt{1+x}+\sqrt{8-x}\) \(\left(t\ge0\right)\)
DKXĐ : \(-1\le x\le8\)
\(\Leftrightarrow t^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\) (1)
BBT của \(t^2\) :
\(x\) | \(-1\) \(0\) \(8\) |
\(t^2\) | \(9+2\sqrt{2}\) \(9\) \(9\) |
\(t\) | \(1+2\sqrt{2}\) \(1\) \(2\sqrt{2}\) |
\(\Leftrightarrow t\in\left(1,2\sqrt{2}\right)\)
Thay \(\left(1\right)\) vào pt ta có :\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{t^2-9}{2}\) (1)
\(\Leftrightarrow f\left(t\right)=t^2+2t-9=2m\)
BBT của \(f\left(t\right)\) :
\(t\) | \(1\) \(2\sqrt{2}\) |
\(f\left(t\right)\) | \(4\sqrt{2}-1\) \(-6\) |
\(\Leftrightarrow2m\in\left[-6;4\sqrt{2}-1\right]\) thì pt có nghiệm
\(\Leftrightarrow m\in\left(-3;\dfrac{-1+4\sqrt{2}}{2}\right)\)
Vẽ dùm mình mấy cái mũi tên trên BBT nhé UwU
Phương trình đã cho tương đương
\(\left\{{}\begin{matrix}x\in\left[2;10\right];x\ge\dfrac{m-3}{3}\\\left[{}\begin{matrix}x=4\\x=-1\\x=11\end{matrix}\right.\end{matrix}\right.\)
Để phương trình có 2 nghiệm phân biệt thì
\(\left[{}\begin{matrix}x=4\\x=-1\\x=10\end{matrix}\right.\) không thỏa mãn điều kiện x ≥ \(\dfrac{m-3}{3}\)
⇔ \(\left[{}\begin{matrix}4< \dfrac{m-3}{3}\\-1< \dfrac{m-3}{3}\\10< \dfrac{m-3}{3}\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}m>15\\m>0\\m>33\end{matrix}\right.\) . (1)
( ( ( 0 15 33 +∞ Dựa vào trục số, (1) ⇔ m > 0
Vậy điều kiện của m là m > 0
Sai thì thứ lỗi ạ !
Bất phương trình làm sao hả bạn?Có nghiệm? Đúng với mọi m? Vô nghiệm?...