tính
\(A=-1^2+2^2-3^2+4^2-...-19^2+20^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{\dfrac{19}{1}+\dfrac{18}{2}+\dfrac{17}{3}+....+\dfrac{1}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{1+\left(\dfrac{18}{2}+1\right)+\left(\dfrac{17}{3}+1\right)+\left(\dfrac{1}{19}+1\right)}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{1+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{20}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{20.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}\)
\(=\dfrac{1}{20}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)
=1/2[1/1*2 - 1/2*3 + 1/2*3 - 1/3*4 + 1/3*4 - 1/4*5 + ... + 1/18*19 - 1/19*20]
=1/2[1/2 - 1/19*20]
=1/2*189/380
=189/760
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=2\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\cdot\left(1-\frac{1}{20}\right)\)
\(=2\cdot\frac{19}{20}=\frac{19}{10}\)
A = 1 x 2 x 3 + 2x 3 x 3 + 3 x 3 x 4 +...+ 3 x 19 x 40
A = 1 x 2 x 3 - 0 x 1x2 + 2x3x4 - 1 x 2 x3 + 3x4x5 - 2x3x4 +...+ 19x20x21 - 18x19x20
A = 19x20x21
A = 7890
A=1.2+2.3+3.4+...+19.20
=> 3A=1.2.3+2.3.3+3.3.4+....+19.20.3
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+....+19.20.21-18.19.20
=19.20.21
=7980
nguồn: Minh Triều
1.(2 - 1)+2.(3 - 1)+3.(4 - 1)+....+20.(20 + 1 - 1)=[(1.2 +2.3 + 3.4 +4.5 + ....+20.(20+1)] - (1 + 2 +3 + ... +20)=\(\frac{20.\left(20+1\right).\left(20.2+1\right)}{6}\)
=2870
Đặt\(A=1^2+2^2+3^2+...+20^2\)
Ta có \(A=1\cdot\left(2-1\right)+2\cdot\left(3-1\right)+3\cdot\left(4-1\right)+...+20\cdot\left(21-1\right)\)
\(A=\left(1\cdot2+2\cdot3+...+20\cdot21\right)-\left(1+2+3+...+20\right)\)
\(A=B-C\)(với \(B=\left(1\cdot2+2\cdot3+...+20\cdot21\right);C=\left(1+2+3+...+20\right)\)
Dễ nhận thấy \(C=1+2+3+...+20=\frac{20\cdot21}{2}=10\cdot21=210\)
Xét \(3B=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+20\cdot21\cdot\left(22-19\right)\)
\(3B=\left(1\cdot2\cdot3+2\cdot3\cdot4+...+20\cdot21\cdot22\right)-\left(1\cdot2\cdot3+2\cdot3\cdot4+...+19\cdot20\cdot21\right)\)
\(3B=20\cdot21\cdot22\Leftrightarrow B=20\cdot7\cdot22=3080\)
Vậy \(A=B-C=3080-210=2870\)
Nhận xét: Phương pháp giải
Tính A bằng cách đưa về những dãy số đã biết cách tính
Tính B bằng cách khử liên tiếp: số hạng sau sẽ khử số hạng liền trước.
Chúc bạn học tốt!
2:
a: =4+3/8+5+2/3
=9+3/8+2/3
=216/24+9/24+16/24
=216/24+25/24
=241/24
b; =2+3/8+1+1/4+3+6/7
=6+3/8+1/4+6/7
=6+5/8+6/7
=419/56
c: \(=2+\dfrac{3}{8}-1-\dfrac{1}{4}+5+\dfrac{1}{3}\)
=6+3/8-1/4+1/3
=6+1/8+1/3
=6+11/24
=155/24
d: \(=3+\dfrac{5}{6}+6\cdot\dfrac{13}{6}\)
=3+13+5/6
=16+5/6
=101/6
e: =3+1/2+4+5/7-5-5/14
=3+4-5+1/2+5/7-5/14
=2+7/14+10/14-5/14
=2+12/14
=2+6/7=20/7
f: =9/2+1/2:11/2
=9/2+1/11
=99/22+2/22=101/22