tìm giá trị nhỏ nhất của biểu thức:
B=/x+\(\frac{1}{2}\)/+y4+\(\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\)
Ta thấy \(5x^2\ge0\forall x\)
\(\Rightarrow5x^2+5\ge5\)
\(\Rightarrow B\ge5\)
Dấu "=" xảy ra khi \(x=0\)
...
\(B=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\ge5\)
Dấu "=" xảy ra <=> x^2 = 0 <=> x = 0
GTNN của B là 5 khi x = 0
B=42-y/y-15=27-(y-15)/y-15=27/(y-15)-1
để B có giá trị nhỏ nhất =>27/y-15 - 1 có GTNN=>27/y-15 có GTNN
=>y-15=-1 => y=14
=> B có GTNN = -28 <=>y=14
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
Bài 1:
Ta có |x-8| > 0 với mọi x
=>A=37-|x-8| > 37 với mọi x
Vậy GTLN của A=37 với x-8=0 =>x=8
Bài 2 tương tự nhé
Học tốt :))
B=\(2x^2-4xy-2x+4y^2+2013\)
\(=x^2-4xy+4y^2+x^2-2x+1+2012\)
\(=\left(x-2y\right)^2+\left(x-1\right)^2+2012\ge2012\)
Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Leftrightarrow x=1\)
\(\left(x-2y\right)^2=0\Leftrightarrow2y=1\Leftrightarrow y=\dfrac{1}{2}\)
Vậy \(Min_B=2012\) khi x=1 , y=\(\dfrac{1}{2}\)