So sánh 2 phân số
A=\(\dfrac{10^8+1}{10^9+1}\) và B=\(\dfrac{10^9+1}{10^{10}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(< \)
b) \(>\)
c) \(< \)
d) \(>\)
e) \(< \)
g) \(>\)
h) \(>\)
k) \(>\)
Ta có: \(A=\dfrac{3^{10}+1}{3^9+1}\)
\(\Leftrightarrow A=\dfrac{3^{10}+3-2}{3^9+1}\)
hay \(A=3-\dfrac{2}{3^9+1}\)
Ta có: \(B=\dfrac{3^9+1}{3^8+1}\)
\(\Leftrightarrow B=\dfrac{3^9+3-2}{3^8+1}\)
hay \(B=3-\dfrac{2}{3^8+1}\)
Ta có: \(3^9+1>3^8+1\)
\(\Leftrightarrow\dfrac{2}{3^9+1}< \dfrac{2}{3^8+1}\)
\(\Leftrightarrow-\dfrac{2}{3^9+1}>-\dfrac{2}{3^8+1}\)
\(\Leftrightarrow-\dfrac{2}{3^9+1}+3>-\dfrac{2}{3^8+1}+3\)
hay A>B
2/
a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)
\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)
-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)
b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)
-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)
c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)
\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)
-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)
a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)
c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)
a)\(\dfrac{19}{10}>\dfrac{10}{11}\)
b)\(\dfrac{11}{10}=\dfrac{12}{11}\)
c)\(\dfrac{9}{10}< \dfrac{10}{11}\)
A = \(\dfrac{n^9+1}{n^{10}+1}\)
\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n - \(\dfrac{n-1}{n^9+1}\)
B = \(\dfrac{n^8+1}{n^9+1}\)
\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) = n - \(\dfrac{n-1}{n^8+1}\)
Vì n > 1 ⇒ n - 1> 0
\(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)
⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)
⇒ A < B
a)\(\dfrac{-8}{9}< \dfrac{-7}{9}\\ \dfrac{6}{7}< \dfrac{11}{10}\)
\(A=\dfrac{2021^{10}-2021+2020}{2021^9-1}\\ =\dfrac{2021\left(2021^9-1\right)+2020}{2021^9-1}\\ =2021+\dfrac{2020}{2021^9-1}\\ B=\dfrac{2021^{11}-1}{2021^{10}-1}=2021+\dfrac{2020}{2021^{10}-1}\)
Ta có:
\(2021^9-1< 2021^{10}-1\\ \Rightarrow\dfrac{2020}{2021^9-1}>\dfrac{2020}{2021^{10}-1}\)
Do đó A > B.
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)\(\left(a,b,m\in N\cdot\right)\)
Ta có:
\(B=\dfrac{10^9+1}{10^{10}+1}< 10\left(10^9< 10^{10}\right)\)
\(\Leftrightarrow B=\dfrac{10^9+1}{10^{10}+1}< \dfrac{10^9+1+9}{10^{10}+1+9}=\dfrac{10^9+10}{10^{10}+10}=\dfrac{10\left(10^8+1\right)}{10\left(10^9+1\right)}=\dfrac{10^8+1}{10^9+1}=A\)
\(\Leftrightarrow A>B\)