K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2019

Bài này khó phết nhề!!!

28 tháng 1 2019

CMR : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2;\left(0\le x\le y\le z\le1\right)\)

Ta có : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\left(1\right)\)

Ta lại có : \(0\le x\le1;0\le y\le1\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Leftrightarrow xy-x-y+1\ge0\)

\(\Leftrightarrow xy+1\ge x+y\left(2\right)\)

Thay (2) và (1) được : \(\frac{x+y+z}{xy+1}\le\frac{xy+1+2}{xy+1}\le\frac{2\left(xy+1\right)}{xy+1}=2\)

16 tháng 5 2020

Vì \(0\le x\le y\le z\le1\Rightarrow x-1\le0;y-1\le0\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\left(1\right)\)

Cmtt: \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{x}{y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{y}{x+z}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\left(4\right)\)

Mà \(\frac{x}{y+z}\le\frac{x+z}{x+y+z}\Rightarrow\frac{x}{y+z}\le\frac{2x}{x+y+z}\)

Cmtt: \(\hept{\begin{cases}\frac{y}{x+z}\le\frac{2y}{x+y+z}\\\frac{z}{x+y}\le\frac{2z}{x+y+z}\end{cases}}\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\le\frac{2\left(x+y+z\right)}{x+y+z}\le2\left(5\right)\)

Từ (4), (5) => đpcm

19 tháng 10 2018

Ta có: \(\sqrt[3]{x^2\left(2-2x\right)}\le\frac{x+x+2-2x}{3}=\frac{2}{3}.\)

\(\Rightarrow x^2\left(2-2x\right)\le\frac{8}{27}\Leftrightarrow-x^3+x^2\le\frac{4}{27}\)

Dấu "=" xảy ra khi: \(x=2-2x\Leftrightarrow x=\frac{2}{3}\)

Bạn xem lại đề nha

30 tháng 4 2020

Ta có:

\(x\sqrt{y}-y\sqrt{x}=\sqrt{x}\cdot\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\le\sqrt{x}\left(\frac{\sqrt{y}+\sqrt{x}-\sqrt{y}}{2}\right)^2\le\frac{x}{4}\le\frac{1}{4}\)(BĐT AM-GM)

Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x=1\\\sqrt{y}=\sqrt{x}-\sqrt{y}\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)

9 tháng 6 2017

Vì \(0\le x,y,z\le1\)

\(\Rightarrow xy\le y\)

\(x^2\le1\)

\(\Rightarrow x^2+xy+xz\le xz+y+1\)

\(\Leftrightarrow x\left(x+y+z\right)\le1+y+xz\)

\(\Leftrightarrow\)\(\frac{x}{1+y+xz}\le\frac{1}{x+y+z}\)

CMTT : các vế khác cug vậy

cộng các vế vào là đc

20 tháng 1 2018

\(0\le x;y;z\le1\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow xy-x-y+1\ge0\)

\(\Rightarrow xy+1\ge x+y\)

Tương tự ta chứng minh được \(xz+1\ge x+z\)và \(yz+1\ge y+z\)

\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{1}{x+y+z}\)(\(x\le1\))

\(\Rightarrow\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\le\frac{1}{x+y+z}\)(\(y\le1\))

\(\Rightarrow\frac{z}{1+x+yz}\le\frac{z}{x+y+z}\le\frac{1}{x+y+z}\)\(z\le1\))

\(\Rightarrow\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)(đpcm)

15 tháng 5 2018

Do \(0\le x,y,z\le1\)\(\Rightarrow x\ge x^2;y\ge y^2;z\ge z^2\)

\(\Rightarrow\left(x-1\right)\left(z-1\right)\ge0\Rightarrow xz-x-z+1\ge0\Rightarrow xz+y+1\ge x+y+z\ge x^2+y^2+z^2\) 

\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{x}{x^2+y^2+z^2}\) 

Tương tự rồi cộng từng vế, ta có:  

\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{3}{x+y+z}\) 

=> ĐPCM