K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2019

để n+6/n là số nguyên thì n+6 chia hết cho n

mà n chia hết cho n =>6 chia hết cho n

n thuộc Ư(6)

n thuộc {-6;-3;-2;-1;1;2;3;6}

mà n thuộc N =>n thuộc {1;2;3;6}

26 tháng 2 2019

                       Giải

Để phân số \(\frac{6+n}{n}\inℤ\)thì \(\left(6+n\right)⋮n\)

Vì \(n⋮n\) nên \(6⋮n\)

\(\Leftrightarrow n\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Mà \(n\inℕ\) nên \(n\in\left\{1;2;3;6\right\}\)

Vậy \(n\in\left\{1;2;3;6\right\}\)

2n-1= 2n+6 -7 = 2(n+3) -7 => để 2n-1 chia hết cho n+3 <=> 7 chia hết cho n+3 => n+3 thuộc ước của 7

=> n+3 thuộc { -7;-1;1;7} => n thuộc { -10;-4;-2;4}

Good Luck !

26 tháng 2 2019

n-1/8 là số nguyên => n-1 chia hết cho 8

n-1 thuộc Ư(8)

n-1 thuộc {-8;-4;-2;-1;1;2;4;8}

n thuộc {-7;-3;-1;0;2;3;5;9}

mà n thuộc N => n thuộc {0;2;3;5;9}

Bài 1: 

a: Để A là phân số thì n+1<>0

hay n<>-1

b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-2;4;-6\right\}\)

17 tháng 5 2018

a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)

Để B là số nguyên

\(\Rightarrow\frac{3}{n-3}\in z\)

\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)

nếu n -3 = 3 => n= 6 (TM)

       n- 3 = - 3 => n = 0 (TM)

      n -3 = 1 => n = 4 (TM)

    n -3 = -1 => n = 2 (TM)

KL: \(n\in\left(6;0;4;2\right)\)

b) đề như z pải ko bn!

ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)

Để C là số nguyên

\(\Rightarrow\frac{16}{n+7}\in z\)

\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)

rùi bn  thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)

18 tháng 4 2018

vậy 

=> n \(\in\){N}

  ^^!

18 tháng 4 2018

Để n - 5/ n -3 là số nguyên thì n - 5 chia hết cho n -3

                                        mà n - 3 chia hết cho n -3

=> ( n - 5) - ( n- 3) chia hết cho n -3

=> 8 chia hết cho n -3

<=> n - 3 thuộc Ư{ 8 } = { +- 1;+-8;+-2: +- 4}

Nếu ..............

23 tháng 2 2017

\(\frac{2n+3}{7}=\frac{2n-4+7}{7}=\frac{2\left(n-2\right)+7}{7}=1+\frac{2\left(n-2\right)}{7}\)

Để \(1+\frac{2\left(n-2\right)}{7}\) là số nguyên <=> \(\frac{2\left(n-2\right)}{7}\) là số nguyên

Mà ( 2;7 ) = 1 => n - 2 chia hết co 7 hay n - 2 = 7k ( k thuộc N* )

=> n = 7k + 2

Vậy với n = 7k + 2 thì \(\frac{2n+3}{7}\) có gt nguyên

23 tháng 2 2017

nếu p/s =1 thì ta có

(1-3/7):2

=(7/7-3/7):2

=4/7:2

=2/7

100%

9 tháng 4 2017

Ta có:

\(A=\dfrac{3n+2}{n-1}=\dfrac{3\left(n-1\right)+5}{n-1}=\dfrac{3\left(n-1\right)}{n-1}+\dfrac{5}{n-1}\)

Để \(A\in Z\) thì \(5⋮n-1\) hay \(n-1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng giá trị:

\(n-1\) \(1\) \(-1\) \(5\) \(-5\)
\(n\) \(2\) \(0\) \(6\) \(-4\)

9 tháng 4 2017

A=\(\dfrac{3.n+2}{n-1}=\dfrac{3\left(n-1\right)+5}{n-1}=\dfrac{3\left(n-1\right)}{n-1}+\dfrac{5}{n-1}=3+\dfrac{5}{n-1}\)

Để A nguyên thì 5\(⋮\)n-1 hay n-1\(\in\)Ư(5)

Ta có bảng sau:

n-1 1 5 -1 -5
n 2 6 0 -4

Vậy n\(\in\){2;6;0;-4}

3 tháng 2 2019

\(a;\frac{2n+5}{n+3}\)

Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)

\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)

\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản

\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Với \(B\in Z\)để n là số nguyên 

\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{-2;-4\right\}\)

Vậy.....................

13 tháng 1 2021

a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)

\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)

Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)

Vậy tta có đpcm 

b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)

hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)

-n - 31-1
n-4-2