K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

câu 1 : vì MN là đường TB của tam giác ABC => MN // BC nên theo hệ quả định lí ta-lét , ta có :


\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)
=> tam giác ABC đồng dạng với tam giác AMN theo trường hợp cạnh cạnh cạnh

3 tháng 3 2020

A N B C M

Vì tam giác ABC cân tại A suy ra AB=AC= 15 cm

Mà AM+MC=AC nên 9 + MC= 15

suy ra MC=6cm

Vì BM là phân giác của góc B nên 

\(\frac{AM}{MC}=\frac{AB}{BC}\Leftrightarrow\frac{9}{6}=\frac{15}{BC}\Rightarrow BC=10cm\)

b) Vì \(\widehat{ABM}=\widehat{MBC}=\frac{\widehat{ABC}}{2}\)

\(\widehat{ACN}=\widehat{NCB}=\frac{\widehat{ACB}}{2}\)

Mà \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)

nên \(\widehat{ABM}=\widehat{MBC}=\)\(\widehat{ACN}=\widehat{NCB}\)

Xét tam giác ABM và tam giác ACN

có AB=AC(GT); góc A chung; \(\widehat{ABM}=\widehat{ACN}\)

suy ra tam giác ABM = tam giác ACN ( g.c.g)

suy ra AN=AM  suy ra tam giác AMN cân tại A suy ra \(\widehat{ANM}=\widehat{AMN}\)

Xét tam giác AMN có \(\widehat{ANM}+\widehat{AMN}+\widehat{A}=180^0\Rightarrow\widehat{ANM}=\frac{180^0-\widehat{A}}{2}\)(1)

Vì tam giác ABC cân tại A suy ra \(\widehat{ABC}+\widehat{ACB}+\widehat{A}=180^0\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (!) và (2) suy ra \(\widehat{ANM}\)\(\widehat{ABC}\)

Mà góc ANM đồng vị với góc ABC

suy ra MN//BC

c) Vì MN//BC ta có

\(\frac{MN}{BC}=\frac{AM}{AC}\Rightarrow\frac{MN}{10}=\frac{9}{15}\Rightarrow MN=6cm\)

CHÚC EM HỌC TỐT

21 tháng 3 2016

cân tại đâu?

21 tháng 3 2016

cân tại C

22 tháng 3 2016

Tam giác ABC cân, mà C > 90 độ => Tam giác ABC cân tại C (nếu cân tại A hoặc B thì không tồn tại ABC, vì tổng 2 góc lớn hơn 180 độ là vô lí).

a. Vì ABC cân tại C, Cx p/giác góc C => Cx cũng là trung trực của ABC.

(Tự vẽ hình).

Xét 2 tam giác AMC & BMC có:

AC = BC (vì ABC cân tại C)

góc ACM = góc BCM (ABC cân tại C)

MC: cạnh chung

Do đó tam giác AMC = tam giác BMC (c.g.c)