K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

Giả sử điều cần chứng minh sai,khi đó \(a;b;c\ge1\)

Thì: \(a.1.1.1.1\le a.a.a.a.a=a^5\)

\(b.1.1.1.1\le b.b.b.b.b=b^5\)

\(c.1.1.1.1\le c.c.c.c.c=c^5\)

Khi đó \(a+b+c\le a^5+b^5+c^5\)(trái với giả thiết)

Vậy điều giả sử sai,điều cần cm đúng

NM
7 tháng 2 2021

bài 1. ta có

\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)

\(\Leftrightarrow b^2+ab+\frac{a^2}{4}+c^2+ac+\frac{a^2}{4}+d^2+ad+\frac{a^2}{4}+\frac{a^2}{4}\ge0\)

\(\Leftrightarrow\left(b+\frac{a}{2}\right)^2+\left(c+\frac{a}{2}\right)^2+\left(d+\frac{a}{2}\right)^2+\frac{a^2}{4}\ge0\) luôn đúng

Bài 2

ta có \(\frac{a^5}{b^5}+1+1+1+1\ge\frac{5.a}{b}\) (bất đẳng thức cauchy)

Tương tự ta có \(\frac{b^5}{c^5}+4\ge\frac{5b}{c};\frac{c^5}{a^5}+4\ge\frac{5c}{a}\)

\(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\)

Mà dễ dàng chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)

Nên ta có \(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

7 tháng 2 2021

bài 1 : \(^{a^2+B^2+C^2+D^2}\)>hoặc =ab+ac+ad 

\(^{a^2+b^2+c^2}\)- ab-ac-ad>hoặc = 0

\((\frac{1}{4}^{a^2-ab+b^2})+(\frac{1}{4}^{a^2-ac+c^2})+(\frac{1}{4}^{a^2-ad+d^2})\)>hoặc =0

\((\frac{1}{2}a-b)^2+(\frac{1}{2}a-c)^2+(\frac{1}{2}a-d)^2>=0\)

Vì \((\frac{1}{2}a-b)^2>=0\)với mọi \(A,b\varepsilon n\)

=> đpcm tự kết luận

13 tháng 1 2019

3.

\(\dfrac{2a^2}{b^2}+2\dfrac{b^2}{c^2}+2\dfrac{c^2}{a^2}\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

áp dụng bất đẳng thức cosi

+ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\dfrac{a}{c}\)

......

tương tự với 2 cái sau

10 tháng 10 2018

Áp dụng BĐT \(AM-GM\) ta có :

\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2\ge5\sqrt[5]{\dfrac{a^{15}b^4}{b^9}}=5\dfrac{a^3}{b}\)

\(\dfrac{b^5}{c^3}+\dfrac{b^5}{c^3}+\dfrac{b^5}{c^3}+c^2+c^2\ge5\sqrt[5]{\dfrac{b^{15}c^4}{c^9}}=5\dfrac{b^3}{c}\)

\(\dfrac{c^5}{a^3}+\dfrac{c^5}{a^3}+\dfrac{c^5}{a^3}+a^2+a^2\ge5\sqrt[5]{\dfrac{c^{15}a^4}{a^9}}=5\dfrac{c^3}{a}\)

Cộng từng vế của BĐT ta được :

\(3\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+2\left(a^2+b^2+c^2\right)\ge5\left(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\right)\)

Tiếp tục áp dụng BĐT \(AM-GM\) ta lại có :

\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2\ge5\sqrt[5]{\dfrac{a^{10}b^6}{b^6}}=5a^2\)

\(\dfrac{b^5}{c^3}+\dfrac{b^5}{c^3}+c^2+c^2+c^2\ge5\sqrt[5]{\dfrac{b^{10}c^6}{c^6}}=5b^2\)

\(\dfrac{c^5}{a^3}+\dfrac{c^5}{a^3}+a^2+a^2+a^2\ge5\sqrt[5]{\dfrac{c^{10}a^6}{a^6}}=5c^2\)

Cộng vế theo vế ta được :

\(2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+3\left(a^2+b^2+c^2\right)\ge5\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge a^2+b^2+c^2\)

\(\Rightarrow3\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge3\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+2\left(a^2+b^2+c^2\right)\ge5\left(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\right)\)

\(\Leftrightarrow5\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge5\left(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\right)\)

\(\Leftrightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\left(đpcm\right)\)

10 tháng 10 2018

Bạn có cách nào ko đụng AM- GM 5 số không ( chứng minh chắc chết ) . Thầy mình gợi ý dùng bđt phụ a^3 + b^3 >= ab(a+b)

28 tháng 7 2018

Ta có:

\(\sum\left(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2\right)\ge5\sum a^2\)

\(\Leftrightarrow2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge5\left(a^2+b^2+c^2\right)-3\left(a^2+b^2+c^2\right)=2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge a^2+b^2+c^2\)

27 tháng 7 2018

Ap dung BDT Cauchy-Schwarz ta co:

\(\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\left(\dfrac{b^3}{a}+\dfrac{c^3}{b}+\dfrac{a^3}{c}\right)\ge\left(a^2+b^2+c^2\right)^2\)

Can chung minh \(\dfrac{b^3}{a}+\dfrac{c^3}{b}+\dfrac{a^3}{c}\ge a^2+b^2+c^2\)

\(VT=\dfrac{a^4}{ac}+\dfrac{b^4}{ab}+\dfrac{c^4}{bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2=VP\)

\("="\Leftrightarrow a=b=c\)

8 tháng 8 2019

a, \(BĐT\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2-ab\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) (luôn đúng vì a,b>0)

Dấu "=" xảy ra <=> a=b

b, Áp dụng bđt câu a ta có: \(a^3+b^3+1\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

=>\(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự \(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng 3 bđt vế theo vế ta được:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=1\left(đpcm\right)\)

Dấu "=" xảy ra <=> a=b=c=1

Câu 6: 

a: \(\left(a+1\right)^2>=4a\)

\(\Leftrightarrow a^2+2a+1-4a>=0\)

\(\Leftrightarrow a^2-2a+1>=0\)

\(\Leftrightarrow\left(a-1\right)^2>=0\)(luôn đúng)

b: \(\left\{{}\begin{matrix}a+1\ge2\sqrt{a}\\b+1\ge2\sqrt{b}\\c+1\ge2\sqrt{c}\end{matrix}\right.\)(Theo BĐT COSI)

\(\Leftrightarrow\left(a+1\right)\left(b+2\right)\left(c+1\right)\ge8\sqrt{abc}=8\)

3 tháng 7 2019

Ta có \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(ab+bc+ac\right)^2}{ab+bc+ac}=ab+bc+ac\left(1\right)\)

Áp dụng bất đẳng thức buniacoxki ta có :

\(\left(\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\right)\left(ab+bc+ac\right)\ge\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)^2\)

Kết hợp với (1)

=> \(\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c

2 tháng 7 2019

Nghe mùi holder ?

2 tháng 7 2019

Áp dụng Svac + Cô-si 3 số được

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=VP\left(đpcm\right)\)

"=" tại a = b = c