Cho P và P+4 là các số nguyên tố (P>3) chứng minh rằng P+8 là hợp số
Cho a ; n thuộc N*, biết an chia hết cho 5 chứng minh rằng a2+50 chia hết cho 25
Các ban làm mau giùm mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: p=3 thì 3+2=5 và 3+10=13(nhận)
p=3k+1 thì p+2=3k+3(loại)
p=3k+2 thì p+10=3k+12(loại)
b: p=3 thì p+10=13 và p+20=23(nhận)
p=3k+1 thì p+20=3k+21(loại)
p=3k+2 thì p+10=3k+12(loại)
2.
p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
vì p ngtố mà p>3 nên p ko chia hết cho 3 ó dạng 3k+1 hoặc 3k+2 (k \(\in\)N*)
p+4>3 nên p là hợp số \(\Rightarrow\)mâu thuẫn với đề bài
p+8>p nên p+8 là hợp số .
vậy p+8 là hợp số
vì p nguyên tố mà p>3 =>p ko chia hết cho 3, vậy p có dạng là 3k+1 hoặc 3k+2
Th1;Nếu p bằng 3k+2 thì p+ 4=3k+2+4=3k+6=3(k+2) chia hết cho 3 (ko thoả mãn)
Th2;Nếu p=3k+1 thì p+8=3k+1+8=3k+9=3(k+3) chia hết cho 3(thoả mãn)
Vậy p+8 là hợp số
Mọi số NT lớn hơn 3 đều có dạng : 3k + 1 ; hoặc 3k + 2
+ ) Với p = 3k + 1 => p + 8 = ( 3k + 1 ) + 8 = 3k + 9 là hợp số ( 1 )
+ ) Với p = 3k + 2 thì p + 4 = ( 3k + 2 ) + 4 = 3k + 6 là hợp số ( loại ) ( 2 )
Từ ( 1 ) và ( 2 ) => Nếu p và p +4 là NT thì p + 8 là HS ( đpcm )
p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+2 => p+4=3k+2+4=3k+6 là hợp số (loại)
=>p=3k+1
=>p+8=3k+1+8=3k+9 là hợp số
Ta được đpcm
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 hoặc 3k + 2 (với k thuộc N)
Dạng p = 3k + 2 thì p + 4 là hợp số , trái với đề bài . Vậy p có dạng 3k + 1 , khi đó p + 8 là hợp số
tk nha bạn
p=3k+1 hoac 3k+2
Voi p=3k+1 thi p+8=3k+1+8=3k+9chia het cho 3
do p nguyên tố mà p>3 nên p=3k+1 và p=3k+2
Trường hợp 1: p=3k+1 thì p+8=3k+9 (chia hết cho 3)
Trường hợp 2: p=3k+2 thì p+4=3k+6 (là hợp số) Loại.
-> p và p+4 là nguyên tố thì p+8 là hợp số.
vì p>3 nên p có dạng là 3k+1 hoặc 3k+2
nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2) là hợp số(loại)
Vậy p=3k+1
=>p+8=3k+1+8=3k+9=3(k+3) là hợp số(ĐPCM)
vậy p+8 là hợp số