K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2019

\(A=\frac{4x+2}{x^2+2}=\frac{x^2+4x+4-\left(x^2+2\right)}{x^2+2}=\frac{\left(x+2\right)^2}{x^2+2}-1\ge-1\)

Dấu bằng xảy ra khi \(x=-2\)

16 tháng 10 2015

Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b)( x2 + Y2 )

Ở đây hệ số của x là 1 nên a là 1.

Ta có: ( x + 2y )<= ( 12 + (căn2)) ( x+ ( căn 2 )2y2 )

=> 1 <= 3 ( x2 + 2y)

=> x2 + 2y>= 1/3

8 tháng 6 2018

\(A=\frac{x^2-4x+1}{x^2}=\frac{x^2-4x+4-3}{x^2}=\frac{\left(x-2\right)^2-3}{x^2}\)

Ta có: \(x^2>0\Rightarrow GTNN\) của (x-2)2-3 có giá trị âm

=> (x-2)2 > hoặc = 0 => GTNN của tử số  là - 3

Khi đó: (x-2)2 = 0 <=> x - 2 = 0 <=> x = 2

=> Mẫu số: 22 = 4

Vậy GTNNA = -3/4 khi x = 2

8 tháng 6 2018

\(A=\frac{x^2-4x+1}{x^2}\)

\(A=\frac{x^2}{x^2}-\frac{4x}{x^2}+\frac{1}{x^2}\)

\(A=1-\frac{4}{x}+\frac{1}{x^2}\)

\(A=\left(\frac{1}{x^2}-\frac{4}{x}+4\right)-3\)

\(A=\left(\frac{1}{x}-2\right)^2-3\)

Mà  \(\left(\frac{1}{x}-2\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-3\)

Dấu "=" xảy ra khi :

\(\frac{1}{x}-2=0\Leftrightarrow\frac{1}{x}=2\Leftrightarrow x=\frac{1}{2}\)

Vậy  \(A_{Min}=-3\Leftrightarrow x=\frac{1}{2}\)

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2