Giải phương trình: \(\dfrac{1}{x+1}\)+\(\dfrac{1}{x-2}\)≥\(\dfrac{1}{x-1}\)+\(\dfrac{1}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\notin\left\{0;-1;-2;-3;-4\right\}\)
Ta có \(\dfrac{1}{x}+\dfrac{1}{x+1}+\dfrac{1}{x+2}+\dfrac{1}{x+3}+\dfrac{1}{x+4}=0\)
\(\Leftrightarrow\dfrac{2x+4}{x.\left(x+4\right)}+\dfrac{2x+4}{\left(x+1\right).\left(x+3\right)}+\dfrac{1}{x+2}=0\)
\(\Leftrightarrow\dfrac{2x+4}{\left(x+2\right)^2-4}+\dfrac{2x+4}{\left(x+2\right)^2-1}+\dfrac{1}{x+2}=0\) (*)
Đặt x + 2 = a \(\left(a\ne0\right)\)
(*) \(\Leftrightarrow\dfrac{2a}{a^2-4}+\dfrac{2a}{a^2-1}+\dfrac{1}{a}=0\)
\(\Leftrightarrow\dfrac{2}{a-\dfrac{4}{a}}+\dfrac{2}{a-\dfrac{1}{a}}+\dfrac{1}{a}=0\) (**)
Đặt \(\dfrac{1}{a}=b\left(b\ne0\right)\) \(\Rightarrow ab=1\)
Ta được (**) \(\Leftrightarrow\dfrac{2}{a-4b}+\dfrac{2}{a-b}+b=0\)
\(\Leftrightarrow\dfrac{2b}{1-4b^2}+\dfrac{2b}{1-b^2}+b=0\)
\(\Leftrightarrow\dfrac{2}{1-4b^2}+\dfrac{2}{1-b^2}=-1\)
\(\Rightarrow4-10b^2=-4b^4+5b^2-1\)
\(\Leftrightarrow4b^4-15b^2+5=0\) (***)
Đặt b2 = t > 0
Ta có (***) <=> \(4t^2-15t+5=0\Leftrightarrow t=\dfrac{15\pm\sqrt{145}}{8}\) (tm)
\(\Leftrightarrow b=\pm\sqrt{\dfrac{15\pm\sqrt{145}}{8}}\)
mà x + 2 = a ; ab = 1
nên \(x=\pm\sqrt{\dfrac{8}{15\pm\sqrt{145}}}-2\)
Thử lại ta có phương trình có 4 nghiệm như trên
\(ĐK:x\ne-1;x\ne1\\ PT\Leftrightarrow\dfrac{\dfrac{2x^2+4x+2-x^2+2x-1}{2\left(x+1\right)\left(x-1\right)}}{\dfrac{x-1+x+1}{x-1}}=\dfrac{x-1}{2\left(x+1\right)}\\ \Leftrightarrow\dfrac{x^2+6x+1}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x-1}{2x}=\dfrac{x-1}{2\left(x+1\right)}\\ \Leftrightarrow\dfrac{x^2+6x+1}{4x\left(x+1\right)}=\dfrac{x-1}{2\left(x+1\right)}\\ \Leftrightarrow x^2+6x+1=2x\left(x-1\right)\\ \Leftrightarrow x^2+6x+1=2x^2-2x\\ \Leftrightarrow x^2-8x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4+\sqrt{17}\left(tm\right)\\x=4-\sqrt{17}\left(tm\right)\end{matrix}\right.\)
đk : x khác 1 ; -1
<=> \(-x\left(x+1\right)+x^2+2=2\left(x-1\right)\)
\(\Leftrightarrow-x+2=2x-2\Leftrightarrow x=\dfrac{4}{3}\)(tm)
\(\Leftrightarrow-x\left(x+1\right)+x^2+2=2x-2\)
\(\Leftrightarrow-x^2-x+x^2+2-2x+2=0\)
=>-3x+4=0
hay x=4/3(nhận)
\(ĐKXĐ:\left\{{}\begin{matrix}x\ne0\\x\ne1\\x\ne2\end{matrix}\right.\)
\(\dfrac{1}{x-2}+\dfrac{1}{x-1}>\dfrac{1}{x}\\ \Leftrightarrow\dfrac{x-1+x-2}{\left(x-1\right)\left(x-2\right)}>\dfrac{1}{x}\\ \Leftrightarrow\dfrac{2x-3}{x^2-3x+2}>\dfrac{1}{x}\\ \Leftrightarrow x\left(2x-3\right)>x^2-3x+2\\ \Leftrightarrow2x^2-3x>x^2-3x+2\\ \Leftrightarrow x^2>2\\ \Leftrightarrow\left[{}\begin{matrix}x>\sqrt{2}\\x< -\sqrt{2}\end{matrix}\right.\)
TK
https://lazi.vn/edu/exercise/giai-phuong-trinh-4x-5-x-1-2-x-x-1-7-x-2-3-x-5
a: \(\Leftrightarrow4x-5=2x-2+x\)
=>4x-5=3x-2
=>x=3(nhận)
b: =>7x-35=3x+6
=>4x=41
hay x=41/4(nhận)
c: \(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{28}{6\left(x-4\right)}-\dfrac{6\left(x+2\right)}{6\left(x-4\right)}=\dfrac{-9}{6\left(x-4\right)}-\dfrac{5\left(x-4\right)}{6\left(x-4\right)}\)
\(\Leftrightarrow28-6x-12=-9-5x+20\)
=>-6x+16=-5x+11
=>-x=-5
hay x=5(nhận)
d: \(\Leftrightarrow x^2+2x+1-\left(x^2-2x+1\right)=16\)
\(\Leftrightarrow4x=16\)
hay x=4(nhận)
đk : x khác -1 ; 1
\(1+5x-5-x-1=x^2-1\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)(tm)
ĐKXĐ:\(x\ne-1,x\ne0\)
\(\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x+1}{x^2+x}\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}-\dfrac{2x+1}{x\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x^2-1+x-2x-1}{x\left(x+1\right)}=0\\ \Rightarrow x^2-x-2=0\\ \Leftrightarrow x^2-2x+x-2=0\\ \Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
Vậy pt có tập nghiệm `S={2}`
\(\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x+1}{x^2+x}\left(đk:x\ne0,-1\right)\)
\(\Leftrightarrow\dfrac{x-1}{x}+\dfrac{1}{x+1}-\dfrac{2x+1}{x\left(x+1\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)+x-2x-1}{x\left(x+1\right)}=0\)
\(\Leftrightarrow x^2+x-x-1+x-2x-1=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Delta=b^2-4ac=\left(-1\right)^2-4.\left(-2\right)=9>0\Rightarrow\sqrt{\Delta}=3\)
\(\Rightarrow\)PT có 2 nghiệm \(x_1,x_2\)
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{1+3}{2}=2\left(n\right)\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{1-3}{2}=-1\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{2\right\}\)
ĐKXĐ: `{(x+1>0),(x ne0):} <=> {(x> -1),(x ne 0):}`
`2/(sqrt(x+1))+1/(x sqrt(x+1)) =1/x`
`<=>(2x+1)/(x sqrt(x+1)) =1/x`
`<=>x(2x+1)=x sqrt(x+1)`
`<=>2x+1=sqrt(x+1)`
`=>(2x+1)^2=x+1`
`<=>4x^2+4x+1=x+1`
`<=>4x^2+3x=0`
`<=>x(4x+3)=0`
`<=>[(x=0\ (KTM)),(x=-3/4):}`
Thay `x=-3/4` vào PT ban đầu `=>` Không thỏa mãn.
Vậy phương trình vô nghiệm.
a: =>10x=3(5-3x)
=>10x=15-9x
=>19x=15
=>x=15/19
b: =>\(\dfrac{x\left(x-4\right)+x^2-1}{x\left(x+1\right)}=2\)
=>2x^2+2x=x^2-4x+x^2-1=2x^2-4x-1
=>2x=-4x-1
=>6x=-1
=>x=-1/6
c:=>x(x+2)-x+2=2
=>x^2+2x-x=0
=>x(x+1)=0
=>x=0(loại) hoặc x=-1(nhận)
d: =>x+1+3x=2
=>4x=1
=>x=1/4
e: =>x(x+1)+x(x-3)=2x
=>x^2+x+x^2-3x=2x
=>2x^2-4x=0
=>x=0(nhận) hoặc x=2(nhận)
f: =>2x+6-4x+12=5
=>-2x=-13
=>x=13/2
ĐK: \(x\ne-1;0;1;2\)
\(\dfrac{1}{x-2}-\dfrac{1}{x-1}-\left(\dfrac{1}{x}-\dfrac{1}{x+1}\right)\ge0\)
\(\Leftrightarrow\dfrac{1}{\left(x-2\right)\left(x-1\right)}-\dfrac{1}{x\left(x+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{x^2+x-\left(x^2-3x+2\right)}{\left(x-2\right)\left(x-1\right)x\left(x+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{2\left(2x-1\right)}{\left(x-2\right)\left(x-1\right)x\left(x+1\right)}\ge0\)
Lập bảng xét dấu ta được nghiệm của BPT:
\(x\in\left(-1;0\right)\cup\text{[}\dfrac{1}{2};1\text{)}\cup\left(2;+\infty\right)\)