Phân tích đa thức thành nhân tử
2y2-7y+3
y3+y2+y
15y2+19y+6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`16x^2z^2+y^2-z^2-16x^2y^2`
`=16x^2(z^2-y^2)+(y^2-z^2)`
`=16x^2(z-y)(y+z)+(y-z)(y+z)`
`=(y+z)[16x^2(z-y)+y-z]`
`=(y+z)(16x^2z-16x^2y+y-z)`
x2-2xy+y2+3x-3y-10
= (x-y)2+3(x-y)-10
= [(x-y)2+5(x-y)]-[2(x-y)+10]
= (x-y)(x-y+5)-2(x-y+5)
= (x-y+5)(x-y-2)
Ta có: \(x^2-2xy+y^2+3x-3y-10\)
\(=\left(x-y\right)^2+3\left(x-y\right)-10\)
\(=\left(x-y+5\right)\left(x-y-2\right)\)
\(4\left(x^2y^2+z^2t^2+2xyzt\right)-\left(x^2+y^2-z^2-t^2\right)^2\)
\(=\left(2xy-2tz\right)^2-\left(x^2+y^2-z^2-t^2\right)\)
\(=\left(2xy-2tz-x^2-y^2+z^2+t^2\right)\left(2xy-2tz+x^2+y^2-z^2-t^2\right)\)
\(=\left[-\left(x-y\right)^2+\left(z-t\right)^2\right]\left[\left(x+y\right)^2-\left(t+z\right)^2\right]\)
\(=-\left(x-y-z+t\right)\left(x-y+z-t\right)\left(x+y-t-z\right)\left(x+y+t+z\right)\)
4(x2y2+z2t2+2xyzt)−(x2+y2−z2−t2)24(x2y2+z2t2+2xyzt)−(x2+y2−z2−t2)2
=[2(xy+zt)]2−(x2+y2−z2−t2)2=[2(xy+zt)]2−(x2+y2−z2−t2)2
=(2xy+2zt)2−(x2+y2−z2−t2)2=(2xy+2zt)2−(x2+y2−z2−t2)2
=(2xy+2zt−x2−y2+z2+t2)(2xy+2zt+x2+y2−z2−t2)2
a: Ta có: \(a^5-ax^4+a^4x-x^5\)
\(=a\left(a^4-x^4\right)+x\left(a^4-x^4\right)\)
\(=\left(a-x\right)\left(a+x\right)\left(a^2+x^2\right)\cdot\left(a+x\right)\)
\(=\left(a-x\right)\cdot\left(a+x\right)^2\cdot\left(a^2+x^2\right)\)
\(2x^2+x-6\)
\(=2x^2-3x+4x-6\)
\(=x\left(2x-3\right)+2\left(2x-3\right)\)
\(=\left(2x-3\right)\left(x+2\right)\)
\(6x^2-13x+6\)
\(=6x^2-9x-4x+6\)
\(=\left(2x-3\right)\left(3x-2\right)\)
\(\left(x^2-2x-6\right)\left(x^2-2x-11\right)+6\)
\(=\left(x^2-2x\right)^2-17\left(x^2-2x\right)+66+6\)
\(=\left(x^2-2x\right)^2-17\left(x^2-2x\right)+72\)
\(=\left(x^2-2x-8\right)\left(x^2-2x-9\right)\)
\(=\left(x-4\right)\left(x+2\right)\left(x^2-2x-9\right)\)
\(x^4+5x^2-6\)
\(=x^4+6x^2-x^2-6\)
\(=x^2\left(x^2+6\right)-\left(x^2+6\right)\)
\(=\left(x^2-1\right)\left(x^2+6\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+6\right)\)
\(x^4+5x^2-6\)
\(=x^4+6x^2-x^2-6\)
\(=x^2\left(x^2+6\right)-\left(x^2+6\right)\)
\(=\left(x^2+6\right)\left(x^2-1^2\right)\)
\(=\left(x^2+6\right)\left(x-1\right)\left(x+1\right)\)
\(2y^2-7y+3=2y\left(y-3\right)-\left(y-3\right)=\left(y-3\right)\left(2y-1\right)\)
\(y^3+y^2+y=y\left(y^2+y+1\right)\)
\(15y^2+19y+6=5y\left(3y+2\right)+3\left(3y+2\right)=\left(3y+2\right)\left(5y+3\right)\)
a) \(2y^2-7y+3=2y^2-6y-y+3\)
\(=2y\left(y-3\right)-\left(y-3\right)=\left(y-3\right)\left(2y-1\right)\)
b) \(y^3+y^2+y=y\left(y^2+y+1\right)\)
c) \(15y^2+19y+6=15y^2+10y+9y+6\)
\(=5y\left(3y+2\right)+3\left(3y+2\right)=\left(3y+2\right)\left(5y+3\right)\)