K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2019

Từ giả thiết suy ra (a-x)*b = (b-y)*a

Suy ra bx = ay suy ra đpcm

mình nghĩ nên sửa đề mẫu phân thức x thành y

12 tháng 10 2016

Từ gt suy ra :\(0=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)=\left(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}\right)+\left(\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\right)+\left(\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}\right)\)

\(=x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\left(1\right)\)

\(a^2,b^2,c^2\ne0\Rightarrow a^2,b^2,c^2>0\Rightarrow a^2+b^2+c^2>a^2;b^2;c^2\)

Thấy rằng trong mỗi dẫu ngoặc,phân thức đầu nhỏ hơn phân thức sau nên mỗi biểu thức trong dấu ngoặc đều âm mà a2,b2,c2 ko âm nên tổng (1) bằng 0 chỉ khi x2 = y2 = z2 = 0 <=> x = y = z = 0.Thay x,y,z = 0 vào 2 vế của đẳng thức cần chứng minh,ta có 2 vế bằng nhau (bằng 0) (đpcm)

16 tháng 8 2017

Ờm thì đại khái như vầy , dùng thêm hằng cao cấp mới chơi được =))

Link : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt 

Dùng hằng mở rộng số 4

Ta có :

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\) (1)

Lại có :

\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1^2=1\) (chỗ này dùng cái skill mở rộng) 

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xyc}{abc}+\frac{ayz}{abc}+\frac{bzx}{abc}\right)=1\)

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)

Thay 1 vào 

=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=1\)

16 tháng 8 2017

mình giải hơi khác 1 chút, nhưng thôi cx đc

22 tháng 3 2017

Có: 1+x = \(\frac{a+b+a-b}{a+b}\) = \(\frac{2a}{a+b}\)

Tương tự, 1 + y = \(\frac{2b}{b+c}\)

1 + z = \(\frac{2c}{c+a}\)

1 - x = \(\frac{q+b-a+b}{a+b}\) = \(\frac{2a}{a+b}\)

Tương tự như thế rồi nhân (1+x), (1+y), (1+z) với nhau; (1-z), (1-y), (1-z) với nhau

15 tháng 6 2017

1

a,Ta có: \(\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(c+b\right)}{c\left(c+b\right)}=\frac{b}{c}\)

b, \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)

Mặt khác: \(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)(2)

Từ (1);(2)\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Leftrightarrow a^2=bc\)

c, Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{b}=\frac{c}{d}=\frac{m}{n}=\frac{a+c+m}{b+d+n}\)

15 tháng 6 2017

Ta có : \(a^2=bc\)

\(\Rightarrow\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(b+c\right)}{c\left(b+c\right)}=\frac{b}{c}\)(đpcm)

1 tháng 6 2016

SaI đề gì mới đúng 

Từ :\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{x}{4a-4b+z}\)

\(\Rightarrow\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)

\(\Rightarrow\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}=\frac{b}{2x+y-z}\left(1\right)\)

\(\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a}{x+2y+z}\left(2\right)\)

\(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-ab+c}{z}=\frac{c}{4x-4y+z}\left(3\right)\)

Từ (1) (2) (3) ta được đpcm