Tính B=1.2.4+2.3.5+...+n(n+1)(n+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1.2.4 + 2.3.5 + ... + n(n+1)(n+3)
A = 1.2.(3+1) + 2.3.(4+1) + ... + n(n+1)[(n+2)+1]
A = [1.2.3 + 2.3.4 + ... + n(n+1)(n+2)] + [1.2 + 2.3 + ... + n(n+1)]
Đặt B = 1.2.3 + 2.3.4 + ... + n(n+1)(n+2)
4B = 1.2.3.(4-0) + 2.3.4.(5-1) + ... + n(n+1)(n+2)[(n+3)-(n-1)]
4B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + n(n+1)(n+2)(n+3) - (n-1)n(n+1)(n+2)
4B = n(n+1)(n+2)(n+3)
B = \(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Đặt C = 1.2 + 2.3 + ... + n(n+1)
3C = 1.2.(3-0) + 2.3.(4-1) + ... + n(n+1)[(n+2)-(n-1)]
3C = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + ... + n(n+1)(n+2) - (n-1)n(n+1)
3C = n(n+1)(n+2)
C = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
A = B + C = \(n\left(n+1\right)\left(n+2\right)\left(\frac{n+3}{4}+\frac{1}{3}\right)\)
\(=n\left(n+1\right)\left(n+2\right)\frac{3n+13}{12}\)
tại sao bạn lại rút gọn được A = n(n+1)(n+2)(n+3/4+1/3) vậy
S=1.2.3+2.3.(4+1)+3.4.(5+2)+...+n(n+1)[(n+2).(n-1)=
=1.2.3+1.2.3+2.3.4+2.3.4+3.4.5+...+(n-1)n(n+1)+n(n+1)(n+2)=
=2[1.2.3+2.3.4+3.4.5+...+(n-1)n(n+1)]+n(n+1)(n+2)
Đặt
A=1.2.3+2.3.4+3.4.5+...+(n-1)n(n+1)
4A=1.2.3.4+2.3.4.4+3.4.5.4+...+(n-1)n(n+1).4=
=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+...+(n – 1).n.(n + 1).[(n + 2) – (n – 2)]
=1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)=
= (n – 1).n(n + 1).(n + 2)
2A=\(\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{2}\)
S=2A+n(n+1)(n+2)
Tử số = \(1.2.4+2.3.5+3.4.6+...+100.101.103\)
\(=1.2.\left(3+1\right)+2.3.\left(4+1\right)+3.4.\left(5+1\right)+...+100.101.\left(102+1\right)\)
\(=1.2.3+1.2+2.3.4+2.3+3.4.5+3.4+...+100.101.102+100.101\)
\(=\left(1.2.3+2.3.4+3.4.5+...+100.101.102\right)+\left(1.2+2.3+3.4+...+100.101\right)\)
Mẫu số = \(1.2^2+2.3^2+3.4^2+...+100.101^2\)
\(=1.2.\left(3-1\right)+2.3.\left(4-1\right)+3.4.\left(5-1\right)+...+100.101.\left(102-1\right)\)
\(=1.2.3-1.2+2.3.4-2.3+3.4.5-3.4+...+100.101.102-100.101\)
\(=\left(1.2.3+2.3.4+3.4.5+...+100.101.102\right)-\left(1.2+2.3+3.4+...+100.101\right)\)
đặt \(A=1.2.3+2.3.4+3.4.5+...+100.101.102\) và \(B=1.2+2.3+3.4+...+100.101\)
bạn tự tính : \(A=\frac{100.101.102.103}{4}=25.101.102.103\); \(B=\frac{100.101.102}{3}=100.101.34\)
rồi thay vào tìm P=\(\frac{A+B}{A-B}\)