CHO N là số nguyên Dw
CMR:
n(n+1)(n+2) ko là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt A = 20184n + 20194n + 20204n
= (20184)n + (20194)n + (20204)n
= (....6)n + (....1)n + (....0)n
= (...6) + (...1) + (...0) = (....7)
=> A không là số chính phương
b) Đặt 1995 + n = a2 (1)
2014 + n = b2 (2)
a;b \(\inℤ\)
=> (2004 + n) - (1995 + n) = b2 - a2
=> b2 - a2 = 9
=> b2 - ab + ab - a2 = 9
=> b(b - a) + a(b - a) = 9
=> (b + a)(b - a) = 9
Lập bảng xét các trường hợp
b - a | 1 | 9 | -1 | -9 | 3 | -3 |
b + a | 9 | 1 | -9 | -1 | -3 | 3 |
a | -4 | 4 | 4 | -4 | -3 | 3 |
b | 5 | 5 | -5 | -5 | 0 | 0 |
Từ a;b tìm được thay vào (1)(2) ta được
n = -1979 ; n = -2014 ;
Xét \(n>3\), khi đó \(n⋮̸3\), dẫn đến \(n^{2024}\) chia 3 dư 1 (số chính phương khi chia cho 3 chỉ có thể dư 0 hoặc 1 nhưng do n không chia hết cho 3 nên chỉ có thể suy ra \(n^{2024}\) chia 3 dư 1)
Suy ra \(n^{2024}+1\) chia 3 dư 2. Do đó nó không thể là số chính phương.
Xét \(n=2\), khi đó \(2^{2024}+1=\left(2^{1012}\right)^2+1>\left(2^{1012}\right)^2\)
Đồng thời \(\left(2^{1012}\right)^2+1< \left(2^{1012}\right)^2+2.2^{1012}+1=\left(2^{1012}+1\right)^2\)
Do đó \(\left(2^{1012}\right)^2< 2^{2024}+1< \left(2^{1012}+1\right)^2\), hay \(2^{2024}+1\) không thể là số chính phương.
Xét \(n=3\), khi đó \(3^{2024}+1=\left(3^{1012}\right)^2+1>\left(3^{1012}\right)^2\)
Và \(\left(3^{1012}\right)^2+1< \left(3^{1012}\right)^2+2.3^{1012}+1=\left(3^{1012}+1\right)^2\)
Do đó \(\left(3^{1012}\right)^2< 3^{2024}+1< \left(3^{1012}+1\right)^2\), hay \(3^{2024}+1\) không thể là số chính phương.
Vậy, với mọi số nguyên tố \(n\) thì \(n^{2024}+1\) không thể là số chính phương.
ko tận cùng là 2;3;7;8
ko tận cùng là 1 vì 11 chia 4 dư 3
ko tận cùng là 5 vì chia 55 chia 4 dư 3
ko tận cùng là 6 vì 66 chia 4 dư 2
ko tận cùng là 9 vì 99 chia 4 dư 3
vậy số có dạng là a000,a444
với số có dạng là a000 thì a chỉ có thể là 1;3;4;6;7;9
với số có dạng là a444 thì a chỉ có thể là 1;3;4;6;7;9
thử đi, có 6TH thôi=))
2. a và b đồng dư 0;1 mod 4
nên a-b đồng dư 0;1;3 mod 4
mà 2014 đồng dư 2 mod 4
nên ko tồn tại a;b
n là số nguyên dương,\
G/s: n(n+1)(n+2) là số chính phương (1)
Ta luôn có: (n,n+1)=1 và (n+1, n+2)=1 (2)
+) TH1: n lẻ
khi đó: (n, n+2)=1 (3)
( chứng minh: đặt (n, n+2)=d => n , n+2 chia hế cho d=> 2 chia hết cho d và vì n lẻ=> n =1)
Từ (1), (2) , (3) ta có thể đặt: n=a^2, n+1=b^2, n+2=c^2 với a, b, c là số nguyên
=> b^2-a^2=1=> (b-a)(b+a)=1 => a=0 => n=0 loại
+) TH2: n chẵn
Đặt n=2k
=> 2k(2k+1)(2k+2)=4k(2k+1)(k+1) là số chính phương
=> k(2k+1)(k+1) là số chính phương
Tương tự thì chứng minh đc : (k, 2k+1)=1, (2k+1, k+1)=1 , (k+1, k)=1
=> Có thể đẳh k=a^2, k+1=b^2 tương tự như trên trường hợp nÀY CŨNG bị loại