Biết xy = 11 và \(x^2y+xy^2+x+y=10\) . Hãy tính \(x^2+y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Ta có :
\(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)
\(=\left(x+y\right)^2+7\left(x+y\right)+10\)
\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)
\(=\left(x+y+2\right)\left(x+y+5\right)\)
Hok tốt
a) \(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)
\(=\left(x+y\right)^2+7\left(x+y\right)+10\)
\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)
\(=\left(x+y+2\right)\left(x+y+5\right).\)
b) \(x^2y+xy^2+x+y=2010\)
\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)
\(\Leftrightarrow11\left(x+y\right)+1\left(x+y\right)=2010\)
\(\Leftrightarrow12\left(x+y\right)=2010\)
\(\Leftrightarrow x+y=\frac{335}{2}\)
\(\Leftrightarrow\left(x+y\right)^2=\frac{112225}{4}\)
\(\Leftrightarrow x^2+2xy+y^2=\frac{112225}{4}\)
\(\Leftrightarrow x^2+y^2+22=\frac{112225}{4}\)
\(\Leftrightarrow x^2+y^2=\frac{112137}{4}.\)
Vậy \(x^2+y^2=\frac{112137}{4}.\)
a,\(x^2+2xy+7x+7y+y^2+10=\left(x^2+2xy+y^2\right)+7\left(x+y\right)+10\)
\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)
\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)
\(=\left(x+y+2\right)\left(x+y+5\right)\)
b,\(x^2y+xy^2+x+y=2010\Rightarrow xy\left(x+y\right)+x+y=2010\)
\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=167,5\)
Ta có:\(x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=\left(167,5\right)^2-2.11=28034,25\)
\(x^2y+xy^2+x+y=2018\)
\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2018\)
\(\Leftrightarrow\left(xy+1\right)\left(x+y\right)=2018\Leftrightarrow12\left(x+y\right)=2018\)
\(\Leftrightarrow x+y=\frac{1009}{6}\)
\(x^2+y^2=\left(x+y\right)^2-2xy=\left(\frac{1009}{6}\right)^2-2.11=...\)
\(x^2y+xy^2+x+y=2010\)
\(\Rightarrow xy\cdot\left(x+y\right)+x+y=2010\)
\(\Rightarrow\left(xy+1\right)\cdot\left(x+y\right)=2010\)
Với : \(xy=11\)
\(\Rightarrow x+y=\dfrac{2010}{12}=\dfrac{335}{2}\)
\(C=x^2+y^2=\left(x+y\right)^2-2xy=\left(\dfrac{335}{2}\right)^2-2\cdot11=\dfrac{112137}{4}\)
Ta có: \(x^2y+xy^2+x+y=2010\)
\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)
\(\Leftrightarrow\left(x+y\right)\left(xy+1\right)=2010\)
\(\Leftrightarrow x+y=\dfrac{2010}{11+1}=\dfrac{2010}{12}=\dfrac{335}{2}\)
Ta có: \(C=x^2+y^2\)
\(=\left(x+y\right)^2-2xy\)
\(=\left(\dfrac{335}{2}\right)^2-2\cdot11\)
\(=\dfrac{112137}{4}\)
a ) x ^ 2 + 2xy + 7x + 7y + y ^2 + 10 = ( x + y ) ^2 + 7 ( x + y ) + 10 = ( x + y ) ( x + y + 17 )
ta có: x2y+xy2+x+y=(x2y+x)+(xy2+y)=x(xy+1)+y(xy+1)
=(x+y)(xy+1)=10
mà xy=11
=> x+y=\(\dfrac{5}{6}\)
Ta có: x2+y2=(x+y)2-2xy=\(\left(\dfrac{5}{6}\right)^2-2.11=-\dfrac{767}{36}\)
Bài giải
Ta có: $x^2+xy^2+x+y=10$
$<=>(xy+1)(x+y)=10$ mà $xy=11$, ta có:
$(xy+1)(x+y)=10$
$<=> 12.(x+y)=10$
$<=>x + y$ =\(\dfrac{10}{12}=\dfrac{5}{6}\)
Ta có:
$x^2+y^2=(x+y)^2 - 2xy$
=\(\left(\dfrac{5}{6}\right)^2-2.11\)
\(=\dfrac{25}{36}-2.11\\ =-\dfrac{767}{36}\)
Vậy \(x^2+y^2=-\dfrac{767}{36}\)