CM BĐT 1/a+1/b>4 /a+b TÌM GTNN của M=2/xy+ 3/x^2+y^2 với x+y =1 và x y dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\ge\dfrac{12}{2xy+x^2+y^2}+\dfrac{2}{\left(x+y\right)^2}=\dfrac{14}{\left(x+y\right)^2}=14\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Áp dụng bđt đã cho ta có \(M=4\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)-\dfrac{1}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}-\dfrac{2}{\left(x+y\right)^2}=\dfrac{16}{\left(x+y\right)^2}-\dfrac{2}{\left(x+y\right)^2}=14\).
Đẳng thức xảy ra khi và chỉ khi \(x=y=\dfrac{1}{2}\)
1. Vì a,d>0 nên ta có (a-b)>=0 tương đương a^2 +b^2 >= 2ab rồi chuyển ad xong từng phân thức rồi chia là ra đpcm
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
\(M=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
\(=3\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{1}{2xy}\)
\(\ge3\cdot\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=12+2=14\)
Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
1 ) Áp dụng BĐT Cô - si cho a ; b dương , ta có :
\(a+b\ge2\sqrt{ab}\Rightarrow\left(a+b\right)^2\ge4ab\Rightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\left(đpcm\right)\)
2 ) \(\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}=\dfrac{3}{2xy}+\dfrac{3}{x^2+y^2}+\dfrac{1}{2xy}=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\)
\(\ge3.\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{3.4}{1}+\dfrac{1}{\dfrac{1}{2}}=12+2=14\)
( áp dụng BĐT Cô - si cho 2 số x ; y dương và BĐT phụ \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Vậy ...