K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2015

\(\frac{5x^2y-10xy+5y}{3x^3-3x}=\frac{5y\left(x^2-2x+1\right)}{3x\left(x^2-1\right)}=\frac{5y\left(x-1\right)^2}{3x\left(x-1\right)\left(x+1\right)}=\frac{5y\left(x-1\right)}{3x\left(x+1\right)}\)

13 tháng 12 2021

\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)

\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

16 tháng 11 2015

\(\frac{5x^2+10xy+5y^2}{3x^3+3y^3}=\frac{5\left(x^2+2xy+y^2\right)}{3\left(x^3+y^3\right)}=\frac{5\left(x+y\right)^2}{3\left(x+y\right)\left(x^2-xy+y^2\right)}=\frac{5\left(x+y\right)}{3\left(x^2-xy+y^2\right)}\)

\(\frac{-15x\left(x-y\right)}{3\left(y-x\right)}=\frac{15x\left(y-x\right)}{3\left(y-x\right)}=\frac{15x}{3}\)

28 tháng 10 2016

Làm tính nhân

(4x3+3xy2-2y3).(3x2-5xy-6y2)

=12x5+12y5-20x4y-36x2y3-8xy4

Phân tích đa thức thành nhân tử

10x3+5x2y-10x2y-10xy2+5y3

=10x3-5x2y-10xy2+5y3

=5(2x3-x2y-2xy2+y3-)

23 tháng 12 2017

a) x4 + 2x3 + x2

= x2 ( x2 + 2x + 1 )

= x2 ( x + 1 )2 

b) 5x2 - 10xy + 5y2 - 20z2 

= 5 [(x2 - 2xy + y2 ) - 4z2 ] 

= 5 [( x - y )2 - ( 2z )2 ]

= 5 ( x - y - 2z ) ( x - y + 2z )

 c) x3 - x + 3x2y + 3xy2+ y3- y

= ( x3 + 3x2y + 3xy2 + y3 ) - ( x + y )

= (x + y )3 - ( x + y)

= ( x + y ) [( x + y )2 - 1 ]

= ( x + y ) ( x + y + 1 ) ( x + y - 1 )

29 tháng 6 2017

\(\frac{5x^2+10xy+5y^2}{3x^2+3y^2}=\frac{5\left(x^2+2xy+y^2\right)}{3\left(x^2+y^2\right)}=\frac{5\left(x+y\right)^2}{3\left(x^2+y^2\right)}\)

14 tháng 8 2017

a.16x-5x2-3 = - ( 5x2-16x+3) = -( 5x2-15x-x+3)= -[ 5x(x-3)-(x-3)] = -(5x-1)(x-3) 

b.x^3-x+3x^2y+3xy^2+y^3-y = \(\left(x^3+3x^2y+3xy^2+y^3\right)-\)\(\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)=\)\(\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)

c.x^4+8x = \(x\left(x^3+8\right)=x\left(x+2\right)\left(x^2-2x+4\right)\)

d.x^2+x-6 = \(x^2+3x-2x-6=x\left(x+3\right)-2\left(x+3\right)\)

\(=\left(x+3\right)\left(x-2\right)\)

e.5x^2-10xy+5y^2-20z^2\(=5\left(x^2-2xy+y^2-4z^2\right)\)

\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=5\left(x-y+2z\right)\left(x-y-2z\right)\)

f.2(x^5)-x^2-5x ( mik ko bik làm)

g.x^3-3x^2-4x+12 = \(x^2\left(x-3\right)-4\left(x-3\right)=\left(x^2-2^2\right)\left(x-3\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)

h.x^4-5x^2+4 \(=\left(x^2\right)^2-4x^2+4-x^2\)

\(=\left(x^2-2\right)-x^2=\left(x^2-2+x\right)\left(x^2-2-x\right)\)

8 tháng 8 2017

a) \(x^2-x-y^2-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

8 tháng 8 2017

a) \(^{x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)}\)

b)\(a^3-a^2x-ay=a\left(a^2-a.x-y\right)\)

c)\(5x^2-10xy+5y-20z^2=-20z^2+\left(5-10x\right)y+5x^2 \)

                                                   \(=-5\left(4z^2+2xy-y-x^2\right)\)

d)\(x^3-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3xy^2+3x^2y+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)