K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

74n174n−1

Ta có:74n174n−1=(74)n1=(...1)n1=(...1)1=...0(74)n−1=(...1)n−1=(...1)−1=...0

Vì các số có tận cùng là 0 thì chia hết cho 5 do đó 74n174n−1

chia hết cho 5(đpcm)

Các câu kia tương tự

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

22 tháng 10 2015

Ta có: 24n+2+1=(24)n.22+1=(24)n.4+1

Ta thấy: 24=16 đồng dư với 1(mod 5)

=>(24)n đồng dư với 1n(mod 5)

=>24n đồng dư với 1(mod 5)

=>24n.4 đồng dư với 1.4(mod 5)

=>24n+2 đồng dư với 4(mod 5)

=>24n+2+1 đồng dư với 4+1(mod 5)

=>24n+2+1 đồng dư với 5(mod 5)

=>24n+2+1 đồng dư với 0(mod 5)

=>24n+2+1 chia hết cho 5

16 tháng 10 2015

xét n=2k:

=>4n+6 chia hết cho 2

=>(5n+7)(4n+6) chia hết cho 2            (1)

xét n=2k+1:

=>5n+7 chia hết cho 2

=>(5n+7)(4n+6) chia hết cho 2             (2)

từ (1);(2)=>đpcm

30 tháng 7 2017

1. Ta có dãy chia hết cho 2 : 2,4,6,...,100

Có số ' số chia hết cho 2 là :

(100-2):2+1=50 số

Ta có dãy chia hết cho 5 : 5,10,15,...,100

Có số ' số chia hết cho 5 là :

(100-5):5+1=20 số

2.

- n là số lẻ nên suy ra n+7 là chẵn

=> (n+4)(n+7) là số chẵn

- n là số chẵn suy ra n+4 là chẵn

=> (n+4)(n+7) là số chẵn

Vậy (n+4)(n+7) là số chẵn mà số chia hết cho 2 chỉ có số chẵn .

=> đpcm

19 tháng 10 2015

Vì n là số tự nhiên => n có dạng 2k ; 2k+1 

Ta có: 

Với n=2k 

=> (n+5).(n+10) = (2k+5).(2k+10)=(2k+5).2.(k+5) chia hết cho 2 

Với n=2k+1 

=> (n+5).(n+10)=(2k+1+5).(2k+1+10)=(2k+6).(2k+11)=2.(k+3).(2k+11) chia hết cho 2 

=> Với mọi số tự nhiên n thì (n+5).(n+10) luôn chia hết cho 2 

28 tháng 10 2016

11.....1-10m=1111...11-n-9n =(111..1-n)-9n

111..1-n luôn luôn chia hết cho 9

=> 11...1-n-10n chia hết cho 9