Cho a,b,c > 0 thỏa mãn a + b + c = 1.CMR:
\(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo câu này nhé:
https://olm.vn/hoi-dap/detail/210792556876.html
Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có :
\(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(2\left(a+b+c\right)\right)=6\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
a) Bất đẳng thức đúng khi a = b = 2c
do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)
xảy ra khi n = 1
Thật vậy, ta có :
\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Vậy n nhỏ nhất là 1
b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)
Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)
do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)
\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
Ta có:\(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a\left(a+b\right)+c\left(a+b\right)}}\)
\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) (Áp dụng BĐT AM-GM)
Tương tự với hai BĐT còn lại và cộng theo vế ta thu được đpcm.
Trước hết ta chứng minh bất đẳng thức sau \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)
Thật vậy, bất đẳng thức trên tương đương với \(\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge2ax+2by\Leftrightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Bất đẳng thức cuối cùng là bất đẳng thức Bunyakovsky nên (*) đúng
Áp dụng bất đẳng thức trên ta có \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{a^2}}\)\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
Ta cần chứng minh \(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{153}{4}\)
Thật vậy, áp dụng bất đẳng thức Cauchy và chú ý giả thiết \(a+b+c\le\frac{3}{2}\), ta được:\(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}\)\(=\left(a+b+c\right)^2+\frac{81}{16\left(a+b+c\right)^2}+\frac{1215}{16\left(a+b+c\right)^2}\)\(\ge2\sqrt{\left(a+b+c\right)^2.\frac{81}{16\left(a+b+c\right)^2}}+\frac{1215}{16.\frac{9}{4}}=\frac{153}{4}\)
Bất đẳng thức đã được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Chậc -.- ai ngờ bài này lại dễ vậy .... Cứ chứng minh đủ kiểu hóa ra dùng Cô-si là xong .... nghĩ xa quá XD
Áp dụng bđt Cô-si cho 3 số dương ta được
\(\sqrt{a^6+b^6+1}\ge\sqrt{3\sqrt[3]{a^6.b^6.1}}=ab\sqrt{3}\)
C/m tương tự \(\sqrt{b^6+c^6+1}\ge bc\sqrt{3}\)
\(\sqrt{c^6+a^6+1}\ge ac\sqrt{3}\)
Cộng 3 bđt trên lại ta được
\(VT\ge\left(ab+bc+ca\right)\sqrt{3}=3\sqrt{3}\)
Dấu "=" xảy ra <=> a = b= c = 1
Vậy ..........
a) Áp dụng bđt AM-GM cho 2 số không âm ta có: \(\sqrt{a+1}=\sqrt{1.\left(a+1\right)}\le\frac{1+a+1}{2}=\frac{a}{2}+1\)
Tương tự: \(\sqrt{b+1}\le\frac{b}{2}+1\)
\(\sqrt{c+1}\le\frac{c}{2}+1\)
Cộng vế với vế ta được: \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le\frac{a+b+c}{2}+3=3,5\)
Dấu "='' xảy ra khi a + 1 = b + 1 = c + 1 = 1
<=> a = b = c = 0, mâu thuẫn với đề: a + b + c = 1
Do đó \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\left(đpcm\right)\)
b) Áp dụng bđt Cauchy-Schwarz cho bộ 3 số dương ta có:
\(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1+1+1\right)\)\(\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+a}\right)^2\right]\)
\(\Rightarrow\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le3.2.\left(a+b+c\right)=6.1=6\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\left(đpcm\right)\)
Easy!
\(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(=\sqrt{\frac{3}{2}}\left[\sqrt{\left(a+b\right).\frac{2}{3}}+\sqrt{\left(b+c\right).\frac{2}{3}}+\sqrt{\left(c+a\right).\frac{2}{3}}\right]\) (*)
Áp dụng BĐT Cô si ngược,ta có:
(*) \(\le\sqrt{\frac{3}{2}}\left[\frac{a+b+\frac{2}{3}}{2}+\frac{b+c+\frac{2}{3}}{2}+\frac{c+a+\frac{2}{3}}{2}\right]\)
\(=\sqrt{\frac{3}{2}}\left(a+b+c+1\right)=\sqrt{\frac{3}{2}}.2=\sqrt{6}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a+b=b+c=c+a=\frac{2}{3}\\a+b+c=1\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}\)